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ABSTRACT 
Identification of the genetic architecture of phenotypic stability and management of adaptational genes is a prerequisite for the 
improvement of adaptation. To locate the genes controlling yield and yield stability in a wild relative of wheat (Agropyron elongatum), 
disomic addition lines of Agropyron into the genetic background of Chinese Spring were used in a randomized complete block design 
with three replications for three years under two different conditions (rainfed and irrigated). Combined analysis of variance showed highly 
significant differences for genotypes, environments and genotype – environment (GE) interaction indicating variability between 
genotypes, environments and their effect in the GE interaction and possible localization of the genes monitoring yield and yield stability. 
The results of regression analysis displayed that linear GE interaction accounted for 41% of the variability in the GE interaction, while 
additive main effect and multiplicative interaction (AMMI) AMMI1 and AMMI2 accounted for 92.4% of GE interaction. Yield stability 
index (YSI) which incorporate AMMI stability value (ASV) and mean yield in a single non- parametric index indicated that most of the 
quantitative trait loci (QTLs) involved in controlling phenotypic stability and yield in Agropyron are located on the chromosome 7E. 
_____________________________________________________________________________________________________________ 
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INTRODUCTION 
 
The genotype (G) by environment (E) interaction is a major 
problem in the study of quantitative traits because it com-
plicates the interpretation of genetic experiments and makes 
predictions difficult. Therefore, the first goal of plant breed-
ers in a crop breeding program is the development of cul-
tivars or genotypes which are stable or adapted to a wide 
range of diversified environments (Farshadfar and Sutka 
2006; Abdulahi et al. 2009; Pimsaen et al. 2010). 

The importance of G × E interactions in national culti-
var evaluation and breeding programs have been demons-
trated in almost all major crops (Mohammadi et al. 2010; 
Zali et al. 2011). 

The genotype-environment interaction complicates the 
identification of superior genotypes and needs to be mod-
eled and interpreted. 

Models may be linear formulation such as joint regres-
sion (Finlay and Wilkinson 1963; Eberhart and Russell 
1966), factorial regression (Abdullahi et al. 2009) or ad-
ditive main effect and multiplicative interaction (AMMI) on 
multiple environment trials (MET) data (Hassnpanah 2011). 

The AMMI model is a powerful multivariate method to 
multi-environmental trials. This technique also called 
FANOVA (factorial analysis of variance), incorporates both 
additive and multiplicative components into an integrated, 
powerful least square analysis (Mohammadi et al. 2007a; 
Pourdad and Mohammadi 2008; Farshadfar 2008). AMMI 
is essentially effective where the assumption of linearity of 
responses of genotypes to a change in environment is not 
fulfilled (Oliveira and Godoy 2006). 

Irrespective of how a stability parameter is measured, 
one of the most critical question is whether it is genetic? If 
the characteristic measured by the parameter is non-genetic, 
it is not heritable and thus selection for such a parameter is 
fruitless (Lin and Binns 1991, 1994; Jalata et al. 2011). 

Various authors have proved that stability indices are gene-
tic and hence heritable (Patanothai and Atkins 1974; Busch 
et al. 1976; Dhillon and Singh 1977; Lin and Binns 1988; 
Farshadfar et al. 1999). 

Identification of the genetic architecture of phenotypic 
stability is a prerequisite for improvement of adaptation, but 
the studies conducted so for offer very little information on 
the genetics of stability, therefore, there is a need for ap-
proaches to focus more upon the genetic aspects, identifi-
cation and management of adaptational genes (Morgan 
1991; Koszegi et al. 1996; Farshadfar and Sutka 2003; Far-
shadfar 2008). 

There are three methods for locating the genes con-
trolling plant characters, namely: agronomic (using mathe-
matical formulas to relate qualitative and quantitative cha-
racteristics), cytogenetics (using substitutions, monosomic 
and disomic addition lines) and molecular (using molecular 
markers) (Kearsey and Pooni 2004; Farshadfar 2010). 

Disomic addition lines in which a single pair of chro-
mosomes from related species is added to the full chromo-
some complement of the recipient, can be used to identify 
chromosomes carrying the genes controlling adaptation and 
phenotypic stability and form the starting point for gene 
transfer and genetic improvement of genotypic stability 
(Ellis et al. 2000; Farshadfar et al. 2008). 

Riley and Kimber (1966) provided the first comprehen-
sive review of the transfer of alien genetic variation into 
wheat. Islam and Shepherd (1991) and Jiang et al. (1994) 
listed the alien genes introduced into wheat. Much less re-
search has been done on the transfer of alien chromosomes 
or genes into wheat to improve stability. 

A large amount of genetic variation exists in the cul-
tivated and wild relatives of wheat. Very few attention has 
been given to the enormous diversity of gene complexes 
determining adaptation and productivity, assemble and in-
corporated over centuries of cultivation in different environ-
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ments (Frankel and Bennett 1970; Sutka et al. 1995). 
Zohary et al. (1969) drew attention to the wild diploid 

progenitors of wheat which constitute large gene pools 
largely unexplored by wheat breeders. 

To understand the genetics of continuous variation, it is 
necessary to identify the chromosomal location of the genes 
controlling quantitative attributes such as yield and yield 
stability (Eskridge et al. 2000). 

In this paper we report the results of phenotypic stabi-
lity experiments on chromosome addition lines of Agro-
pyron elongatum (Host) Beauvois into Triticum aestivum L. 
em. Thell. cv. ‘Chinese Spring’. 

 
MATERIALS AND METHODS 
 
To locate the genes controlling yield and yield stability, disomic 
addition lines of Agropyron elongatum (2n=2x=14) into the gene-
tic background of ‘Chinese Spring’ (CS) wheat (2n=6x=42) were 
used in a randomized complete block design (RCBD) with three 
replications in two different environments (irrigated and rainfed) 
for three years (2000-2003). The plant materials consisted of 9 
genotypes including 7 disomic addition lines (DALS) in the gene-
tic background of bread wheat (Triticum aestivum L., 2n=6x=42, 
AABBDD cv Chinese Spring = CS) along with CS (as recipient) 
and Sardari (as control). The DALS were named as: 1E to 7E indi-
cating addition of chromosomes 1E to 7E from A. elongatum into 
the genome of CS, respectively. The genotypes were cultivated at 
the field of College of Agriculture, Razi University, Kermanshah, 
Iran (47° 20´ N latitude, 34° 20´ E longitude and 1351.6 m alti-
tude). Climate in the region is classified as semi-arid with mean 
annual rainfall of 378 mm. Minimum and maximum temperature 
at the research station were -27 and 44°C, respectively. Each geno-
type was planted in 2-m rows and at 15 × 25 cm inter-plant and 
inter-row distances, respectively. Each plot consisted of 100 seeds 
(each row 50 seeds). The environments were considered as ran-
dom factors, while genotypes as fixed factors. At the time of har-
vesting 5 single plants were selected randomly and grain yield was 
measured. 

 
Statistical analysis 
 
Additive main effect and multiplicative interaction (AMMI) was 
performed using IRRISTAT software. Briefly, analysis of variance 
is used to partition variance into three components: genotype devi-
ations from the grand mean, environment deviations from the 
grand mean, and GE deviations from the grand mean. Subse-
quently, multiplication effect analysis is used to partition GE devi-
ations into different interaction principal component axes (IPCA), 
which can be test for statistical significant through ANOVA. The 
AMMI analysis is interpreted by plotting the IPCAs of GE in vari-
ous types of biplots. 
 
AMMI stability value (ASV) 
 
ASV is the distance from the coordinate point to the origin in a 
two-dimensional scattergram of IPCA1 scores against IPCA2 
scores in the AMMI model (Purchase et al. 2000). Because the 
IPCA1 score contributes more to the GE interaction sum of square, 
a weighted value is needed. This weight is calculated for each 
genotype and each environment according to the relative contribu-
tion of IPC1 and IPC2 to interaction SS as follows: 

 
  
 
 
 
SSIPC1/SSIPC2 is the weight given to the IPC1 value by divi-

ding the IPC1 sum of square on the IPC2 sum of square. The 
larger the IPCA scores, either negative or positive, the more speci-
fically adapted a genotype is to certain environments, smaller 
IPCA scores indicating a more stable genotype across environ-
ments. 

 
 
 

Yield stability index (YSI) 
 
A new approach known as yield stability index (YSI) is recom-
mended, calculated by ranking the mean grain yield of genotypes 
(RY) across environments and rank of AMMI stability value 
(RASV). YSI incorporate both mean yield and stability in a single 
criterion as: 
 
YSI = RASV + RY 

 
A low value of this parameter shows desirable genotypes with 

high mean yield and stability. 
 
RESULTS AND DISCUSSION 
 
The results of combined analysis of variance (Table 1) 
showed highly significant differences for genotypes, envi-
ronments and GE interaction indicating variability between 
genotypes, environments and their effects in the GE inter-
action and possible localization of the genes monitoring 
yield and yield stability. The percentage of the sum of 
squares (SS) attributable to the genotype, environment and 
GE after removing SS due to error and replication was 
93.13%. 

Mean comparison revealed that average grain yield of 
genotypes ranged from 72.581 g for Sardary to 24.607 g for 
disomic addition 4E. 

The results of regression analysis (Table 2) showed that 
linear GE interaction accounted for 41% of variability in the 
GE interaction. 

As a general rule the effectiveness of regression ana-
lysis is when 50% of the total sum of square is accounted 
for by linear GE interaction (Hayward et al. 1993), hence 
regression analysis is not useful for stability analysis of 
genotypes (Wade et al. 1995). Nevertheless, using regres-
sion analysis of Finlay and Wilkinson (1963) and Eberhart 
and Russell (1966), because of its wide application, it was 
concluded that chromosomes 3E, 5E and 7E have regres-
sion coefficients greater than 1 with minimum deviation 
from regression indicating general adaptability for rainfed 
and irrigated conditions, while chromosomes 2E and 6E 
with b less than 1 have specific adaptation for rainfed agri-
culture. Sutka et al. (1995) and Farshadfar et al. (2002, 
2004) reported that most of the genes controlling drought 
tolerance indicators and general adaptation in Agropyron 
are located on chromosomes 3E, 5E and 7E which are in 
agreement with the result of this study. 

 
 

Table 1 Combined analysis of variance for grain yield under different rain-
fed and irrigated conditions. 
Source of variation Degrees of freedom Mean square 
Environment (E)  5 10329.86** 

Error1 12 83.40 
Genotype (G)  8 4760.09** 

G×E 40 379.81** 
Error2 96 70.64 

** Significant at 1% level of probability 
 
Table 2 AMMIa analysis of grain yield in Agropyron-wheat disomic 
addition lines over rainfed and irrigated conditions. 

SS explained% MS df Source 
36.3 1586.70** 8 Genotypes (G) 
49.2 3443.29** 5 Environments (E) 
14.5 126.60** 40 G×E 
68.3 288.24** 12 AMMI1 
24.1 122.16** 10 AMMI2 
3.6 22.85ns 8 AMMI3 
3 25.154ns 6 AMMI4 
1 12.49 4 Residual (noise) 
- 659.89 53 Total 

** significant at 1% level of probability; ns: non- significant; 
a additive main effect and multiplicative interaction. 
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AMMI model and pattern analysis 
 
In the AMMI model, principal component analysis is based 
on the matrix of deviation from additivity or residual, while 
pattern analysis employs both classification and ordination 
techniques. In this respect, the results of AMMI analysis of 
both genotype and environment will be grouped based on 
their similar responses (Gauch 1992; Wade et al. 1995; 
Pourdad and Mohammadi 2008). 

Using ANOVA, yield sum square was partitioned into 
genotype, environment and GE interaction. GE interaction 
was further partitioned by principal component analysis 
(Table 2). 

The results of AMMI analysis indicated that 36.3, 49.2 
and 14.5% of total variability was justified by genotype, 
environment and GE interaction, respectively. 

AMMI1 and AMMI2 were highly significant and cumu-
latively accounted for 92.4% of GE interaction, therefore 
AMMI1 and AMMI2 clearly explain the interpretation of 
results and possible localization of the genes in the geno-
types investigated. 

 
IPCAs crossover and non-cross over interaction 
 
IPCA scores of genotypes and environments displayed posi-
tive and negative values (Table 3, 4). 

A genotype with large positive IPCA score in some 
environments must have large negative interaction in some 
other environments. Thus, these scores presented a dispro-
portionate genotype response (Yan and Hunt 2001; Moham-
madi et al. 2007b), which was the major source of variation 
for any crossover (qualitative) interaction. This dispropor-
tionate genotype response is referred to as crossover GE 
interaction for convenience. Diversely, scores with the same 
sign or near zero represent a non- crossover (quantitative) 
GE interaction or a proportionate genotype response 
(Mohammadi and Amri 2008; Farshadfar 2008). 

 
AMMI stability value (ASV) 
 
In fact, ASV is the distance from zero in a two dimensional 
scattergram of IPCA1 (interaction principal component ana-
lysis axis 1) scores against IPCA2 scores. Since the IPCA1 
score contributes more to GE sum of square (Table 2), it 
has to be weighted by the proportional difference between 
IPCA1 and IPCA2 scores to compensate for the relative 
contribution of IPCA1 and IPCA2 total GE sum of squares. 

The distance from zero is then determined using the the-
orem of Pythagoras (Purchase et al. 2000). 

In ASV method, a genotype with least ASV score is the 
most stable, accordingly, genotype Sardari (landrace from 
Iran) followed by CS and E7 were the most stable, while E2 
and E4 showed specific adaptability and E3, E5 and E6 
revealed medium adaptability. 

Adjusted yield can be obtained by AMMI1, AMMI2, 
AMMI3 and AMMI4 for each environment by the formula: 

 
 

where 
 

mean of genotype i; 
 

mean of environment j; 
 

grand mean, and used as a selection criterion in 
breeding programs. 

Biplot analysis and ordination techniques indicated 
highly significant differences for AMMI1 and AMMI2 
which justify 92.4% of variability in the GE interaction. 
Biplot analysis (Fig. 1) also revealed that genotype 7E has 
high positive interaction (their angle is less than 90%) with 
environments A, B, D and E, genotype 1E with environ-
ments B an E, genotypes 2 and 4 with environments B, C, E 
and F, genotypes 6E and 8 with environments C, F, E and D 
and genotype 9 with environments A, C, D and F, genotypes 

3E and 5E with environments A and D. 
In general the importance of AMMI model is in reduc-

tion of noise even if principal components do not cover 
much of the GESS (Gauch and Zobel 1989; Gauch 1992). 

It is to be mentioned that genotypes toward the center of 
biplot have zero interaction, therefore show general adap-
tation with different grain yield. Genotypes 8 and 6E are 
located in this category. The other genotypes are around the 
center of biplot indicating the variation between the entries 
(Manrique and Hermann 2000; Farshadfar 2008). 

As AMMI2 has least RMSPD (root mean square pre-
dictive difference), therefore, a recommendation must be 
based on this model (Crossa et al. 1991; Wade et al. 1995; 
Farshadfar and Sutka 2006). 

According to AMMI2 the best disomic addition line 
was 7E. The advantage of biplot analysis is that genotypes 
are judged in grouping form and therefore save time and 
precision in interpretation and selection (Wade et al. 1995; 
Alagarswamy and Chandra 1998; Farshadfar and Sutka 
2003). 

 
Yield stability index (YSI) 
 
Stability per se should however not be the only parameter 
for selection, because the most stable genotypes would not 
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Table 3 Mean yield, first and second IPCA scores, ASVi and YSIi of geno-
types investigated. 
genotypes Mean IPCAa1 IPCA2 ASVb YSIc 
E1 31.394 1.334 1.815 4.190 9 
E2 25.286 3.545 0.658 10.057 15 
E3 42.783 -4.048 -1.628 11.389 12 
E4 24.610 3.534 -0.219 9.995 15 
E5 37.213 -2.815 -0.747 7.922 10 
E6 27.647 0.723 -0.726 7.744 10 
E7 58.838 -2.659 4.332 8.687 8 
CHS 42.067 0.215 -0.604 0.856 5 
SAR 72.581 0.172 -2.881 2.920 3 

a interaction principal component analysis; b AMMI stability value; cyield stability 
index 

 
Table 4 Mean yield, first and second IPCA scores and ASVi of Environ-
ments. 
code Mean IPCAa1 IPCA2 ASVb 
A 75.38 -3.321 -1.205 9.48 
B 38.60 2.043 2.082 6.06 
C 29.82 2.062 -2.493 6.36 
D 48.78 -5.145 -0.449 14.63 
E 24.45 0.664 4.243 4.66 
F 24.59 3.109 -2.178 9.09 

a interaction principal component analysis; bAMMI stability value 
 

Fig. 1 Interaction biplot for AMM2 model. 
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necessarily give the best yield performance (Mohammadi et 
al. 2007a, 2007b), hence there is a need for approaches that 
incorporate both mean yield and stability in a single index, 
that is why Kang (1991, 1993) introduced three selection 
criteria for simultaneous selection of yield and stability 
entitled: rank – sum (RSM), modified rank – sum (MRSM) 
and the statistics yield – stability (YSi). 

In this regard, as ASV takes into account both IPCA1 
and IPCA2 that justify most of the variation in the GE inter-
action (92.4%), therefore the rank of ASV and yield mean 
in such a way that the lowest ASV takes the rank one, while 
the highest yield mean takes the rank one and then the ranks 
are summed in a single simultaneous selection index of 
yield and yield stability named as: Yield stability index 
(YSI). The least YSI is considered as the most stable with 
high yield mean. Based on the YSI most of the genes con-
trolling yield and yield stability are located on chromosome 
7E which is in accordance with the result of AMMI2 model. 
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