

# Characterization of Bacterial Isolates as Natural Biocontrol Agents of Bollworm from an Epizootic Pest (*Heliothis armigera*)

Pritam Chattopadhyay<sup>1</sup> • Shrikanth Gorthi<sup>2</sup> • Sandipan Chatterjee<sup>1</sup> • Sukanta K. Sen<sup>1\*</sup>

<sup>1</sup> Department of Botany, Visva-Bharati, Santiniketan – 731 235, W.B., India <sup>2</sup> M/S Ajay Biotech India Ltd., Pune – 411 003, India Commencing and them is also public medification and Commencing and the second second

Corresponding author: \* sksenvb@rediffmail.com

# ABSTRACT

In an attempt to screen biocontrol agents, nine bacterial strains were isolated from a dead lepidopteron pest *Heliothis* sp. (bollworm) of a heavily infested pea field of the village Khalad, Pune, Maharastra, India. The collected epizootic *Heliothis* sp. specimens were brown in color with a blackish alimentary canal, clearly visible from the ventral side. While testing their pathogenicity, isolates AB<sub>2</sub>, AB<sub>4</sub>, AB<sub>7</sub>, and AB<sub>8</sub> were found to be pathogenic to *Heliothis armigera* following Koch's postulate. Through a biochemical assays and 16S rRNA gene sequencing the isolates were identified as *Serratia entomophila* (AB<sub>2</sub>), *Cronobacter sakazakii* (AB<sub>4</sub>), and *Salmonella choleraesuis* (AB<sub>7</sub> and AB<sub>8</sub>) belonging to the family Enterobacteriaceae. The isolates are the first report as bacterial entomo-pathogens of an insect epizootic from India.

Keywords: bacteria, biocontrol, entomopathogen, Heliothis armigera

# INTRODUCTION

Insects and other pests cost billions of dollars annually to farmers resulted from crop loss (in terms of quantity and quality) which are added to the cost of production (Ignacimuthu and Jayaraj 2003). Every year millions of dollars of chemical pesticides are invested for chemical pesticides to control lepidopteron pests like *Heliothis armigera* (bollworm), *Spodoptera littoralis* (cutworm) and *Plutella xylostella* (diamondback moth) (Khan and Law 2005). During the last couple of decades, the use of such synthetic chemicals has raised a number of environmental issues causing health hazards (Nauen and Denholm 2005). Thus, it needs scientists to comply with the upcoming adverse situation by exploring potential microbes (Lacey and Shapiro-Ilan 2008).

Insect pests, the entomopathogens, are susceptible to different pathogens, like other living organisms. Common entomopathogens include viruses (granulosis virus, GV; nuclear polyhedrosis virus, NPV), bacteria (Bacillus thuringiensis, Serratia entomophila), and fungi (Beauveria bassiana, Aspergillus nomius). Many bacterial entomopathogens have been developed to utilize as commercial controlling agents, including Gram-positive (Bacillus thuringiensis, B. cereus, B. subtilis, Burkholderia cepacia) and Gram-negative (Pseudomonas fluorescens, Serratia entomophila) microorganisms (Howell and Stipanovic 1979; Johnson et al. 2001; Roh et al. 2007; Jeong et al. 2010). The use of such biocontrol agents is gaining momentum, since they are easy to deliver, less prone to pest resistance and improve plant growth (Ignacimuthu et al. 2000; Nauen and Denholm 2005; Young et al. 2009). Among biocontrol agents, bacteria are being increasingly recognized as plant protection agents as some bacteria inhibit the growth of pathogenic fungi, nematodes and insects (Whipps 2001; Siddiqui *et al.* 2007). The epizootics in nature provide a rare chance to isolate and to identify natural pathogens of pests. The present paper describes the isolation and characterization of bacterial entomopathogens of epizootic Lepidopteran pests from a pea field in a district of Pune in Maharashtra, India.

# MATERIALS AND METHODS

# Collection of pests

Dead epizootic *Heliothis* were collected from a heavily infested pea field of the village Khalad, Purandar, Pune district of Maharashtra, India following the methods of Krieg (1987). The field had no history of application of biopesticides and no report of using chemical pesticides, at least six months prior to the collection. The collected specimens were brown with a blackish alimentary canal clearly visible from the ventral side.

# Isolation of gut colonizing bacteria

Homogenized suspension (in 5% sterile saline) of alimentary tract was used as source sample to inoculate into brain heart infusion agar (BHI-agar, Hi-media, India) plates and incubated at 30°C for 48 h. Well separated and distinctly different bacterial colonies were detected and transferred to the slants of same medium. Purity of the isolates was checked based on differential colony morphology and maintained at 4°C in a refrigerator.

# **Rearing of bollworm**

*Heliothis armigera* larvae were obtained from the stock of the R&D facility of M/S Ajay Biotech (I) Ltd, India. Larvae were maintained on a commercial diet separately (IM002, Hi-Media, Mumbai, India) in vials at constant ambient temperature (Sheikh *et al.* 1990; Chenchaiah and Bhattacharya 2005). In order to obtain a homogeneous mass of the test insects, the larvae were reared till emergence of adults. After rearing for two generations, the 5-day-old larvae were used for bioassay tests (Rahman and Talukder 2006).

# Screening of pathogens

The experimental larvae were fed with a commercial diet (Hi-Media) mixed with test culture  $(1.5 \times 10^6 \text{ to } 1.5 \times 10^{11} \text{ cfu ml}^{-1})$ , separately for different doses for 24 h. Thereafter, the larvae were transferred to a fresh set of vials and maintained on a commercial

Table 1 Colony morphology and cell type of the bacterial strains isolated from epizootic Heliothis armigera.

| Bacterial isolate | Colony morphology on nutrient agar plates at 24 h of growth | Cell type | Gram nature |
|-------------------|-------------------------------------------------------------|-----------|-------------|
| AB <sub>1</sub>   | Round, smooth, brown, 3.5 mm                                | Rods      | - ve        |
| $AB_2$            | Round, smooth, cream-white, slimy, 2 mm                     | Cocci     | - ve        |
| $AB_3$            | Round, rough, blackish, slimy, pin-headed                   | Cocci     | - ve        |
| $AB_4$            | Round, smooth, bluish, pin-head colony                      | Rods      | - ve        |
| AB <sub>5</sub>   | Round, smooth, semi transparent, slimy, 2.5-30 mm           | Cocci     | - ve        |
| $AB_6$            | Round, rough, purple, slimy, 2.5-3.0 mm                     | Cocci     | - ve        |
| AB <sub>7</sub>   | Ovoid, rough, semi transparent, slimy, 1-2 mm               | Rods      | - ve        |
| $AB_8$            | Round, smooth, dirty white, pin headed                      | Rods      | - ve        |
| $AB_9$            | Round, rough, brown, 2.5-3.0 mm                             | Rods      | - ve        |

diet only. Each experimental batch contained 30 larvae which were examined regularly and mortality rate was recorded every 12 h. From the gut of dead bollworms, bacteria were again isolated and verified for their virulence (Falkow 1988).

#### **Biochemical characterization**

To characterize the working isolates, morphological, cultural, staining and biochemical properties were ascertained (Son *et al.* 2003). Test kits (Hi-Media) were used for biochemical (KB002 Hi-AssortedTM), carbohydrate fermentation (KB009 Hi-carbohydrate<sup>TM</sup>) and paper octa-disc for antibiotic sensitivity tests. After detailed characterization, the generic identifications were made following Bergey's Manual of Systematic Bacteriology (Williams *et al.* 2003).

## Characterization by 16s rDNA

For their species level identification, 16S rRNA gene sequencing was performed. 16S rRNA genes were amplified with specific primers f27 and r1492 from DNA samples from boiled cell extracts with a thermo cycler (Applied Biosystems, US) using a high fidelity PCR master kit (Roche Applied Science, US) following the manufacturer's instructions (Gerhardt et al. 1994). 16S rRNA gene sequences from PCR products were determined using universal primers and fluorescent labeled dideoxynucleotide terminators, in an ABI PRISM 377 automated DNA sequencer in accordance with the manufacturer's protocol for Taq DNA polymerase initiated cycle sequencing reactions (Gerhardt et al. 1994). Using FASTA version 3.4, 16S rRNA gene sequences of the isolates were compared against those in the EMBL, GenBank and DDBJ databases (Pearson and Lipman 1988) and similarities of the closest related species were determined. Using CLUSTAL W multiple alignments of sequences were executed (Thompson et al. 1994) to find a consensus neighbour-joining tree (Saitou and Nei 1987) out of 1000 phylogenetic trees produced through MEGA version 4 programme (Tamura et al. 2007). Bootstrap values (1000 replicates) were calculated to validate the reproducibility of the branching pattern (Felsenstein 1985).

## **RESULTS AND DISCUSSION**

#### Selection of pathogens

Based on colony morphology and bacterial cell types nine purified isolates were designated as  $AB_1 - AB_9$  (Table 1). When *Heliothis* larvae were fed isolates AB<sub>2</sub>, AB<sub>4</sub>, AB<sub>7</sub>, and AB<sub>8</sub> under a challenged dose, the consumption of feed stopped within 8-10 h (Fig. 1). Progress of the disease was very distinct as the color of the insects gradually turned brown and was quite comparable with Serratia entomophila (Gatehouse et al. 2009). The darkened alimentary canal became clearly visible from the ventral side and succumbed to death by leaching of body fluid. Only isolate AB<sub>8</sub> turned the pest black, instead of browning with disease progression. Therefore, only four isolates out of nine successfully passed through cross checking for entomopathogens. The pathogens were also successfully re-isolated from the pest and identified. These cross checking tests were performed three times for each isolate.



Fig. 1 Mortality percentage of *Heliothis armigera* against nine isolates  $(AB_1 - AB_9)$  (control was designated as C inside the column). In each experiment  $1.5 \times 10^8$  cfu/ml cell concentration was used. Standard errors (SE) were calculated based on three replicates.

#### **Biochemical characterization**

The isolates were found to utilize citrate and malonate as the sole carbon source, reduce nitrate and were carbohydrate fermentation tests (CFT) positive for fructose, dextrose, galactose, raffinose, trehalose, melibiose, mannose, mannitol, and ribose, but negative for adonitol, α-methyl-D-glucoside, and 2-nitrophenyl β-D-galactopyranoside (ONPG), indicating the close relationship among the isolates and belonging to the family Enterobacteriaceae (Table 2). Isolate AB<sub>2</sub> was identified as a member of the genus *Serratia* because of its inability to utilize ornithine as the sole carbon source and was CFT-negative to lactose, L-arabinose, dulcitol, inositol, sorbitol, and esculin, but not salicin (Table 3). Isolate AB<sub>4</sub> was identified as Cronobacter (Enterobacter) being positive to Tryptophan de-aminase (TDA) and CFTnegative to dulcitol, sorbitol, except inositol and esculin (Williams et al. 2003). Isolates AB<sub>7</sub> and AB<sub>8</sub> were members of Salmonella being positive to lysine and ornithine and CFT-negative to sucrose, salicin, and esculin, except L-arabinose (Williams et al. 2003). The only difference between

Table 2 Identification index for the selected isolates.

| Tests                       | AB <sub>2</sub> | AB <sub>4</sub> | $AB_7$ | AB <sub>8</sub> |
|-----------------------------|-----------------|-----------------|--------|-----------------|
| Citrate utilization         | +               | +               | +      | +               |
| Lysine                      | -               | -               | +      | +               |
| Ornithine                   | -               | +               | +      | +               |
| Urease                      | -               | -               | -      | -               |
| TDA                         | -               | +               | -      | -               |
| Nitrate reduction           | +               | +               | +      | +               |
| H <sub>2</sub> S production | -               | -               | +      | +               |
| Glucose                     | +               | +               | +      | +               |
| Adinitiol                   | -               | -               | -      | -               |
| Lactose                     | -               | +               | -      | +               |
| Arabinose                   | -               | +               | +      | +               |
| Sorbitol                    | -               | -               | +      | +               |

| Table   | 3  | Carbohydrate | fermentation | test | (CFT) | index | of the | selected |
|---------|----|--------------|--------------|------|-------|-------|--------|----------|
| isolate | s. |              |              |      |       |       |        |          |

| Tests/ Isolates      | AB <sub>2</sub> | AB <sub>4</sub> | AB <sub>7</sub> | AB <sub>8</sub> |
|----------------------|-----------------|-----------------|-----------------|-----------------|
| Lactose              | -               | +               | -               | +               |
| Xylose               | +               | +               | +               | +               |
| Maltose              | +               | +               | +               | +               |
| Fructose             | +               | +               | +               | +               |
| Dextrose             | +               | +               | +               | +               |
| Galactose            | +               | +               | +               | +               |
| Raffinose            | +               | +               | +               | +               |
| Trehalose            | +               | +               | +               | +               |
| Melibiose            | +               | +               | +               | +               |
| Sucrose              | +               | +               | -               | -               |
| L-Arabinose          | -               | +               | +               | +               |
| Mannose              | +               | +               | +               | +               |
| Inuline              | -               | +               | +               | +               |
| Sodium gluconate     | +               | +               | +               | -               |
| Glycerol             | +               | +               | +               | -               |
| Salicin              | +               | +               | -               | -               |
| Glucosamine          | V               | +               | +               | V               |
| Dulcitol             | -               | -               | V               | +               |
| Inositol             | -               | +               | -               | V               |
| Sorbitol             | -               | -               | +               | V               |
| Mannitol             | +               | +               | +               | +               |
| Adonitol             | -               | -               | -               | -               |
| α-Methyl-D-glucoside | -               | -               | -               | -               |
| Ribose               | +               | +               | +               | +               |
| Rhamnose             | +               | +               | -               | -               |
| Cellobiose           | V               | V               | +               | +               |
| Melezitose           | V               | V               | -               | -               |
| α-Methyl-D-mannoside | V               | -               | -               | -               |
| Xylitol              | V               | -               | -               | -               |
| ONPG                 | -               | -               | -               | -               |
| Esculin              | -               | +               | -               | -               |
| D-Arabinose          | -               | V               | -               | -               |
| Citrate              | +               | +               | +               | +               |
| Malonate             | +               | +               | +               | +               |
| Sorbose              | +               | +               | -               | -               |

(\*N.B.: Based on % of color reactions and presented as + = >90%; - = <10%; V = 11-89%).

Table 4 Antibiotic sensitivity profile of the selected isolates.

| Antibiotics            | Conc. | Inhib  | Inhibition Zone Diameter (mm) |                 |                 |  |  |
|------------------------|-------|--------|-------------------------------|-----------------|-----------------|--|--|
|                        | (µg)  | $AB_2$ | AB <sub>4</sub>               | AB <sub>7</sub> | AB <sub>8</sub> |  |  |
| Ampicillin (A)         | 10    | 13     | 12                            | 13              | 11              |  |  |
| Carbenicillin (Cb)     | 100   | 16     | 13                            | 16              | 18              |  |  |
| Gentamicin (G)         | 10    | 15     | 15                            | 13              | 15              |  |  |
| Clindamycin (Cd)       | 2     | -      | -                             | -               | -               |  |  |
| Cephalothin (Ch)       | 30    | 13     | 26                            | -               | -               |  |  |
| Cephalexin (Cp)        | 30    | 21     | 15                            | 21              | 14              |  |  |
| Chloramphenicol (C)    | 30    | 11     | 19                            | 19              | 19              |  |  |
| Sulphamethoxazole (Sx) | 25    | 18     | -                             | 14              | -               |  |  |
| Tetracyclin (T)        | 30    | 13     | 14                            | 12              | 11              |  |  |
| Co-Trimazine (Cm)      | 25    | 20     | 11                            | 21              | 21              |  |  |

these two isolates (AB<sub>7</sub> and AB<sub>8</sub>) was in the CFT pattern, particularly of lactose, sodium gluconate, glycerol, and inositol. All four isolates showed resistance to ampicillin and tetracycline, but were sensitive to clindamycin; otherwise they showed a varied response (**Table 4**).

## Identification of the bacterial pathogens

16S rRNA gene sequences of the isolates were compared against those in the EMBL, GenBank and DDBJ databases and similarities of the closest related species were determined: the strain AB<sub>2</sub> (accession no. GU370899) as *Serratia entomophila* (100%), AB<sub>4</sub> (accession no. GU370900) as *Cronobacter sakazakii* (100%), AB<sub>7</sub> (accession no. GU370901) as *Salmonella enterica* subsp. *Entericalow* (100%), and AB<sub>8</sub> (accession no. GU370902) as *Salmonella enterica* subsp. *Diarizonae* (100%) (**Fig. 2**).

Phylogenetic analysis on the basis of 16S rRNA gene

sequences clearly suggest that the isolates belong to the classical branch of the family Enterobacteriaceae comprising the genera *Escherichia*, *Salmonella*, *Shigella*, *Klebsiella*, and *Serratia* (**Fig. 3**). From the high values of 16S rRNA gene sequence similarity (> 99%) observed between the new isolates and related species, together with their unequivocally high similarity to species of all the closest genera, it can be concluded that AB<sub>2</sub>, AB<sub>4</sub>, AB<sub>7</sub> and AB<sub>8</sub> form a taxonomically coherent assemblage and represent the same phylogenetic lineage. The stability of the cluster is also reflected in its bootstrap value of 98-100%, which signifies that the four isolates form a consolidated and homogeneous phylogenetic group.

Strains of *S. entomophila* and *S. proteamaculans* were reported as a natural biocontrol agent for the grass grub *Costelytra zealandica*, a major pasture pest of New Zealand (Trought *et al.* 1982; Stucki *et al.* 1984; Jackson *et al.* 1992; Young *et al.* 2009). Recently, the insecticidal activity of a bacterial strain, *Serratia* sp. EML-SE1, was evaluated against diamondback moth (Jeong *et al.* 2010). Pathogenicity determinants of *S. entomophila* and *P. luminescens* also showed similarity (Hurst *et al.* 2000).

## CONCLUSIONS

Amongst the worked out isolates, *Serratia* normally shows an association involving several insect genera and species of the orders Orthoptera (crickets and grasshoppers), Isoptera (termites), Coleoptera (beetles and weevils), Lepidoptera (moths), Hymenoptera (bees and wasps), and Diptera (flies). Strains of *S. entomophila* and *S. proteamaculans* are natural biocontrol agents of the major pasture pest of New Zealand grass grub *Costelytra zealandica. Serratia* also carries an extensive history of commercial exploitation as a biopesticide. The present study suggests that the insect epizootics could be exploited as a lucrative source for natural biopesticides. All the entomopathogens could not be commercially exploited but would, at least, provide a potential source of a gene pool for high efficiency pest management.

#### ACKNOWLEDGEMENTS

Author (PC) is thankful to Biotechnology Consortium India Ltd., New Delhi for providing the financial assistance and M/s Ajay Biotech, Pune, India for providing necessary support for utilizing the Laboratory facility. Authors thankfully acknowledge the kind support of Prof. Gautam Ghosal, Department of English and Other Modern European Languages for thoroughly revising the English language. Authors convey their special thanks to Dr. Teixeira da Silva for revising the language once again. Authors are indebted to Dr. Bomba Dam for sequence analysis support.

## REFERENCES

Chenchaiah KC, Bhattacharya AK (2005) Mass rearing of Spodoptera litura on artificial diet. Annual Plant Protection Science 13, 76-80

- Falkow S (1988) Molecular Koch's postulates applied to microbial pathogenicity. *Review on Infectious Disease* 10 (2), S274-6
- Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791
- Gatehouse HS, Tan B, Christeller JT, Hurst MRH, Marshall SDG, Jackson TA (2009) Phenotypic changes and the fate of digestive enzymes during induction of amber disease in larvae of the New Zealand grass grub (*Costelytra* zealandica). Journal of Invertebrate Pathology 101, 215-22
- Gerhardt P, Murray RGE, Wood WA, Krieg NR (Eds) (1994) Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington DC, USA, pp 656-682
- Howell CR, Stipanovic RD (1979) Control of *Rhizoctonia solani* in cotton seedlings with *Pseudomonas fluorescens* and with an antibiotic produced by the bacterium. *Phytopathology* 69, 480-482
- Hurst MRH, Glare TR, Jackson TA, Ronson CW (2000) Plasmid located pathogenicity determinants of *Serratia entomophila*, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of *Photorhabdus luminescens. Journal of Bacteriology* 182, 5127-5138
- Ignacimuthu S, Jayaraj S (2003) *Biological Control of Insect Pests* (Series Number 1), Entomology Research Institute, Phoenix Publishing House Pvt. Ltd., New Delhi, India, pp 1-348

| $AB_2$                             |                           | GGCTCA                    | GATTGAACGC                | TGGCGGCAGG               | CCTAACACAT               | GCAAGTCGAG               | G CGGTAGCAC                  | G GGGGAGCTTG                 | CTCCCTGGGT               | GACGAGCGGC               |
|------------------------------------|---------------------------|---------------------------|---------------------------|--------------------------|--------------------------|--------------------------|------------------------------|------------------------------|--------------------------|--------------------------|
| AB <sub>4</sub><br>AB <sub>2</sub> | TAGAGTTTGA                | TCAT <mark>GGCTCA</mark>  | GATTGAACGC                | TGGCGGCAGG               | CCTAACACAT               | GCAAGTCGAA               | A CGGTAACAGO<br>A CGGTAACAGO | G GAGCAGCTTG<br>G AAGCAGCTTG | CTGCTCTGCT<br>CTGCTTTGCT | GACGAGTGGC               |
| AB <sub>8</sub>                    |                           |                           |                           |                          |                          |                          |                              | CAGCTTG                      | CTGCTTCGCT               | GACGAGTGGC               |
| AB <sub>2</sub>                    | GGACGGGTGA                | GTAATGTCTG                | GGAAACTGCC                | TGATGGAGGG               | GGATAACTAC               | TGGAAACGGI               | I AGCTAATAC                  | C GCATAACGTC                 | TTCGGACCAA               | AGTGGGGGAC               |
| $AB_4$                             | GGACGGGTGA                | GTAATGTCTG                | GGAAACTGCC                | TGATGGAGGG               | GGATAACTAC               | TGGAAACGGI               | I AG <mark>CTAATAC</mark>    | C GCATAACGTC                 | TTCGGACCAA               | AGTGGGGGAC               |
| AB <sub>7</sub><br>AB <sub>8</sub> | GGACGGGTGA<br>GGACGGGTGA  | GTAATGTCTG<br>GTAATGTCTG  | GGAAACTGCC<br>GGAAACTGCC  | TGATGGAGGG<br>TGATGGAGGG | GGATAACTAC<br>GGATAACTAC | TGGAAACGG1<br>TGGAAACGG1 | I GGCTAATACO                 | C GCATAACGTC<br>C GCATAACGTC | GCAAGACCAA<br>GCAAGACCAA | AGAGGGGGAC<br>AGAGGGGGAC |
|                                    |                           |                           |                           |                          |                          |                          |                              |                              |                          |                          |
| AB₂<br>AB₄                         | CTTCGGGCCT<br>CTTCGGGCCT  | CACGCCATCA                | GATGTGCCCA<br>GATGTGCCCA  | GATGGGATTA<br>GATGGGATTA | GCTAGTAGGT<br>GCTAGTAGGT | GGGGTAATGO               | G CTCACCTAGO<br>G CTCACCTAGO | G CGACGATCCC<br>G CGACGATCCC | TAGCTGGTCT<br>TAGCTGGTCT | GAGAGGATGA<br>GAGAGGATGA |
| AB <sub>7</sub>                    | CTTCGGGCCT                | CTTGCCATCA                | GATGTGCCCA                | GATGGGATTA               | GCTTGTTGGT               | GAGGTAACGO               | G CTCACCAAG                  | G CGACGATCCC                 | TAGCTGGTCT               | GAGAGGATGA               |
| AB <sub>8</sub>                    | CTTCGGGCCT                | CTTGCCATCA                | GATGTGCCCA                | GATGGGATTA               | GCTTGTTGGT               | GAGGTAACGO               | G CTCACCAAG                  | GACGATCCC                    | TAGCTGGTCT               | GAGAGGATGA               |
| AB <sub>2</sub>                    | CCAGCCACAC                | TGGAACTGAG                | ACACGGTCCA                | GACTCCTACG               | GGAGGCAGCA               | GTGGGGAATA               | A TTGCACAAT                  | G GGCGCAAGCC                 | TGATGCAGCC               | ATGCCGCGTG               |
| $AB_4$<br>$AB_7$                   | CCAGCCACAC<br>CCAGCCACAC  | TGGAACTGAG                | ACACGGTCCA<br>ACACGGTCCA  | GACTCCTACG               | GGAGGCAGCA               | GTGGGGAATA               | A TTGCACAAT(<br>A TTGCACAAT( | GGCGCAAGCC<br>GGCGCAAGCC     | TGATGCAGCC               | ATGCCGCGTG               |
| $AB_8$                             | CCAGCCACAC                | TGGAACTGAG                | ACACGGTCCA                | GACTCCTACG               | GGAGGCAGCA               | GTGGGGAATA               | A TTGCACAAT                  | G GGCGCAAGCC                 | TGATGCAGCC               | ATGCCGCGTG               |
| $AB_2$                             | TGTGAAGAAG                | GCCTTCGGGT                | TGTAAAG <mark>C</mark> AC | TTTCAGCGAG               | GAGGAAGG-G               | TAATGTCTT                | A AT <mark>ACGGCA</mark> T   | f CG <mark>ATTGACGT</mark>   | TACTCGCAGA               | AGAAGCACCG               |
| AB4                                | TATGAAGAAG                | GCCTTCGGGT                | TGTAAAGTAC                | TTTCAGCGGG               | GAGGAAGGTG               | CTGTGGTTA                | A TAACCACAG                  | - CAATTGACGT                 | TACCCGCAGA               | AGAAGCACCG               |
| AB <sub>8</sub>                    | TATGAAGAAG                | GCCTTCGGGT                | TGTAAAGTAC                | TTTCAGCGGG               | GAGGAAGGIG               | TTGTGGTTA                | A TAACCGCAG                  | - CAATTGACGT<br>- CAATTGACGT | TACCCGCAGA               | AGAAGCACCG               |
| AB.                                | COTALOTOCO                | TCCCACCACC                | ССССТААТА                 | CGGAGGGTCC               | ΔΔΟΟΟΨΤΔΔΤ               | СССААТТАСТ               |                              |                              | СССТТТСТТА               | λαπαλαλάσα               |
| AB <sub>4</sub>                    | GCTAACTCCG                | TGCCAGCAGC                | CGCGGTAATA                | CGGAGGGTGC               | AAGCGTTAAT               | CGGAATTACI               | I GGGCGTAAA                  | G CGCACGCAGG                 | CGGTCTGTTA               | AGTCAGATGT               |
| AB7<br>AB0                         | GCTAACTCCG<br>GCTAACTCCG  | TGCCAGCAGC                | CGCGGTAATA                | CGGAGGGTGC               | AAGCGTTAAT               | CGGAATTACT               | I GGGCGTAAA                  | G CGCACGCAGG                 | CGGTCTGTCA               | AGTCGGATGT               |
|                                    |                           |                           |                           |                          |                          |                          |                              |                              | *                        |                          |
| AB <sub>2</sub>                    | GAAATCCCCG                | CGCTTAACGT                | GGGAACTGCA                | TTTGAAACTG               | GCAAGCTAGA               | GTCTCGTAG                | A GGGGGGGTAG                 | A ATTCCAGGTG                 | TAGCGGTGAA               | ATGCGTAGAG               |
| AB <sub>7</sub>                    | GAAATCCCCG                | GGCTCAACCT                | GGGAACTGCA                | TTCGAAACTG               | GCAGGCTTGA               | GTCT<br>GTCT<br>TGTAG    | A GGGGGGTAG                  | A ATTCCAGGTG                 | TAGCGGTGAA               | ATGCGTAGAG               |
| $AB_8$                             | GAAATCCCCG                | GGCTCAACCT                | GGGAACTGCA                | TTCGAAACTG               | GCAGGCTTGA               | GTCTTGTAG                | A GGGGGGTAG                  | A ATTCCAGGTG                 | TAGCGGTGAA               | ATGCGTAGAG               |
| $AB_2$                             | ATCTGGAGGA                | ATACCGGTGG                | CGAAGGCGGC                | CCCCTGGACG               | AAGACTGACG               | CTCAGGTGCO               | G AAAGCGTGG                  | G GAGCAAACAG                 | GATTAGATAC               | CCTGGTAGTC               |
| AB <sub>4</sub>                    | ATCTGGAGGA                | ATACCGGTGG                | CGAAGGCGGC                | CCCCTGGACG               | AAGACTGACG               | CTCAGGTGCO               | G AAAGCGTGG                  | GAGCAAACAG                   | GATTAGATAC               | CCTGGTAGTC               |
| AB <sub>7</sub><br>AB <sub>8</sub> | ATCTGGAGGA                | ATACCGGIGG<br>ATACCGGIGG  | CGAAGGCGGC                | CCCCTGGACA               | AAGACTGACG               | CTCAGGTGCC               | G AAAGCGIGGO<br>G AAAGCGIGGO | GAGCAAACAG<br>G GAGCAAACAG   | GATTAGATAC               | CCTGGTAGTC               |
|                                    |                           |                           | _                         |                          |                          |                          |                              |                              |                          |                          |
| AB <sub>2</sub>                    | CACGCTGTAA<br>CACGCCGTAA  | ACGATGTCGA                | TTTGGAGGTT<br>CTTGGAGGTT  | GTGCCCTTGA               | GGCGTGGCTT               | CCGGAGCTA                | A CGCGTTAAA<br>A CGCGTTAAG   | I CGACCGCCTG                 | GGGAGTACGG               | CCGCAAGGTT               |
| AB <sub>7</sub>                    | CACGC <mark>C</mark> GTAA | ACGATGTCTA                | CTTGGAGGTT                | GTGCCCTTGA               | GGCGTGGCTT               | CCGGAGCTA                | A CGCGTTAAG                  | AGACCGCCTG                   | GGGAGTACGG               | CCGCAAGGTT               |
| AB <sub>8</sub>                    | CACGC <mark>C</mark> GTAA | ACGATGTCTA                | CTTGGAGGCT                | GTGCCCTTGA               | GGCGTGGCTT               | CCGGAGCTA                | A CGCGTTAAG                  | AGACCGCCTG                   | GGGAGTACGG               | CCGCAAGGTT               |
| $AB_2$                             | ААААСТСААА                | TGAATTGACG                | GGGGCCCGCA                | CAAGCGGTGG               | AGCATGTGGT               | TTAATTCGAT               | GCAACGCGAA                   | A GAACCTTACC                 | TACTCTTGAC               | ATCCAGAGAA               |
| AB <sub>4</sub>                    | AAAACTCAAA                | TGAATTGACG                | GGGGCCCGCA                | CAAGCGGTGG               | AGCATGTGGT               | TTAATTCGAT               | GCAACGCGAA                   | A GAACCTTACC                 | TGGTCTTGAC               | ATCCAGAGAA               |
| AB7<br>AB8                         | аааастсааа<br>аааастсааа  | TGAATTGACG                | GGGGCCCGCA                | CAAGCGGTGG               | AGCATGTGGT               | TTAATTCGAT               | I GCAACGCGAA<br>I GCAACGCGAA | A GAACCTTACC<br>A GAACCTTACC | TGGTCTTGAC<br>TGGTCTTGAC | ATCCACAGAA               |
|                                    |                           |                           |                           |                          |                          |                          |                              |                              |                          |                          |
| $AB_2$<br>$AB_4$                   | CTTTCCAGAG<br>TCCTGCAGAG  | ATGGATTGGT<br>ATGCGGGAGT  | GCCTTCGGGA<br>GCCTTCGGGA  | ACTCTGAGAC<br>ACTCTGAGAC | AGGTGCTGCA<br>AGGTGCTGCA | TGGCTGTCGT               | F CAGCTCGTG<br>F CAGCTCGTG   | F TGTGAAATGT<br>F TGTGAAATGT | TGGGTTAAGT<br>TGGGTTAAGT | CCCGCAACGA               |
| AB7                                | CTTTC                     | ATGGACTG <mark>G</mark> T | GCCTTCGGGA                | ACTGTGAGAC               | AGGTGCTGCA               | TGGCTGTCGT               | CAGCTCGTG                    | T TGTGAAATGT                 | TGGGTTAAGT               | CCCGCAACGA               |
| $AB_8$                             | GTTTG <mark>CAGAG</mark>  | ATGCGAATGT                | GCCTTCGGGA                | ACTGTGAGAC               | AGGTGCTGCA               | TGGCTGTCGT               | CAGCTCGTG                    | TGTGAAATGT                   | TGGGTTAAGT               | CCCGCAACGA               |
| $AB_2$                             | GCGCAACCCT                | TATCCTTTGT                | TGCCAGCGAT                | TCGGTCGGGA               | ACTCAAAGGA               | GACTGCCGGT               | Г GATAAAC <mark>C</mark> G   | G AGGAAGGTGG                 | GGATGACGTC               | AAGTCATCAT               |
| $AB_4$                             | GCGCAACCCT                | TATCCTTTGT                | TGCCAGCGGT                | CCGGC                    | ACTCAAAGGA               | GACTGCCGGT               | I GATAAACCG                  | G AGGAAGGTGG                 | GGATGACGTC               | AAGTCATCAT               |
| AB7                                | GCGCAACCCT                | TATCCTTTGT                | TGCCAGCGAT                | TAGGTCGGGA               | ACTCAAAGGA               | GACTGCCAG                | Г GATAAACTG                  | G AGGAAGGTGG                 | GGATGACGTC               | AAGTCATCAT               |
| 900                                | JUGGAACUUI                | INICCITICI                | TOCCAGCGGI                | INGGOGGGA                | AGTCAAAGGA               | GACTOCCAG                | G                            | - ACCAAGEIGG                 | JOAT GACGIC              |                          |
| AB <sub>2</sub>                    | GGCCCTTACG                | AGTAGGGCTA                | CACACGTGCT                | ACAATGGCGT               | ATACAAAGAG               | AAGCGAGCTC               | C GCCAGAG                    | A GCGGACCTCA                 | TAAAGTACGT               | CGTAGTCCGG               |
| AB <sub>7</sub>                    | GGCCCTTACG                | ACCAGGGCTA<br>ACCAGGGCTA  | CACACGIGCI                | ACAATGGCGC               | ATACAAAGAG               | AAGCGACCIC               | C GCGAGAGCAZ<br>C GCGAGAGCAZ | A GCGGACCICA<br>A GCGGACCICA | TAAAGIGCGI               | CGTAGTCCGG               |
| $AB_8$                             | GGCCCTTACG                | ACCAGGGCTA                | CACACGTGCT                | A                        |                          |                          |                              |                              |                          | GTAGTCCGG                |
| $AB_2$                             | ATTGGAGTCT                | GCAACTCGAC                | TCCATGAAGT                | CGGAATCGCT               | AGTAATCGTA               | GATCAGAATO               | G CTACGGTGA                  | A TACGTTCCCG                 | GGCCTTGTAC               | ACACCGCCCG               |
| AB4<br>ABa                         | ATTGGAGTCT<br>ATTGGAGTCT  | GCAACTCGAC                | TCCATGAAGT                | CGGAATCGCT               | AGTAATCGTG               | GATCAGAATO               | G CCACGGTGA                  | A TACGTTCCCG                 | GGCCTTGTAC               | ACACCGCCCG               |
| AB <sub>8</sub>                    | ATTGGAGTCT                | GCAACTCGAC                | TCCATGAAGT                | CGGAATCGCT               | AGTAATCGTG               | GATCAGAATC               | G CC                         |                              |                          |                          |
|                                    |                           | CClemcoor                 |                           | <b>"</b> »               | 1 1 C C M M C C C C      | Accesson                 |                              |                              | CCCCmc2 2 Cm             | CCULLOR                  |
| AB <sub>2</sub><br>AB <sub>4</sub> | TCACACCATG                | GGAGTGGGTT<br>GGAGTGGGTT  | GCAAAAGAAG<br>GCAAAAGAAG  | TAGGTAGCTT<br>TAGGTAGCTT | AACCTTCGGG               | AGGGCGCTTA               | A CCACTITGT(<br>A CCACTITGT( | G ATTCATGACT                 | GGGGTGAAGT               | CGTAACAAGG<br>CGTAACAAGG |
| $AB_7$                             | TCACACCATG                | GGAGTGGGTT                | GCAAAAGAAG                | TAGGTAGCTT               | AACCTTCGGG               | AGGGCGCTT                | A CCAC                       |                              |                          |                          |
| AB <sub>8</sub>                    |                           |                           |                           |                          |                          |                          |                              |                              |                          |                          |
| $AB_2$                             | TAACCGTAGG                | GGAACCTGC                 |                           |                          |                          |                          |                              |                              |                          |                          |
| $AB_4$                             | TAACCGTA                  |                           |                           |                          |                          |                          |                              |                              |                          |                          |
| AB <sub>7</sub>                    |                           |                           |                           |                          |                          |                          |                              |                              |                          |                          |

84

Fig. 2 (previous page) Partial 16S rRNA gene sequences were shown for the isolates AB<sub>2</sub>, AB<sub>4</sub> (A) and AB<sub>7</sub>, AB<sub>8</sub> (B). Sequencing were carried out at least three times each and thereafter compared within and the gray zones were removed.



Fig. 3 NJ tree showing the phylogenetic status among the isolates showing a close relation being members of the family Enterbacteriaceae based on analysis of aligned completed 16S rDNA sequence. *Pseudomonas azotoformans* was used as an outgroup. Asterisks indicate branches that were recovered in the maximum-likelihood tree. The scale bar unit represents 0.01 substitutions per nucleotide position. Bootstrap support values greater than 50% for 1,000 replications were shown at the nodes.

- Ignacimuthu S, Sen A, Janarthanan S (2000) Biotechnological Applications for Integrated Pest Management, Science Publication Inc., USA, 149 pp
- Jackson TA, Pearson JF, O'Callaghan M, Mahanty HK, Willocks M (1992) Pathogen to product development of Serratia entomophila Enterobacteriaceae as a commercial biological control agent for the New Zealand grass grub Costelytra zealandica. In: Jackson TA, Glare TR (Eds) Use of Pathogens in Scarab Pest Management, Intercept Ltd., Andover, UK, pp 191-198
- Jeong HU, Mun HY, Oh HK, Kim SB, Yang KY, Kim I, Lee HB (2010) Evaluation of insecticidal activity of a bacterial strain, *Serratia* sp. EML-SE1 against diamondback moth. *The Journal of Microbiology* 48, 541-545
- Johnson WP, Zhang P, Gardner PM, Fuller ME, DeFlaun MF (2001) Monitoring the response of indigenous bacteria to the arrival of injected bacteria using ferrographic capture. *Applied and Environmental Microbiology* 67 (10), 4908-4913
- Khan MZ, Law FCP (2005) Adverse effects of pesticides and related chemicals on enzyme and hormone systems of fish, amphibians and reptiles: A review. *Proceedings of the Pakistan Academy of Science* **42**, 315-323
- Krieg A (1987) Disease caused by bacteria and other prokaryotes. In: Fuxa JR, Tanda Y (Eds) *Epizootiology of Insect Diseases*, John Wiley and Sons, New York, pp 323-355
- Lacey LA, Shapiro-Ilan DI (2008) Microbial control of insect pests in temperate orchard systems: Potential for incorporation into IPM. *Annual Review* of Entomology 53, 121-144
- Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: Current status and future Prospects. Archives of Insect Biochemistry and Physiology 58, 200-215
- Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proceedings of the Natural Academy of Sciences USA 85, 2444-2448
- Rahman A, Talukder FA (2006) Bioefficacy of some plant derivatives that protect grain against the pulse beetle, *Callosobruchus maculates*. Journal of Insect Science 6, 1-10
- Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Journal of Microbiol-

ogy and Biotechnology 17, 547-559

- Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution* 4, 406-425
- Sheikh MR, Sheikh D, Naqvi SB (1990) Inexpensive technology for mass rearing of corn earworm *Heliothis armigera* (Hunb) on modified noctuid diet beyond 20<sup>th</sup> generations. *Journal of the Islamic Academy of Science* 3, 333-335
- Siddiqui ZA, Baghel G, Akhtar MS (2007) Biocontrol of *Meloidogyne java-nica* by *Rhizobium* and plant growth-promoting rhizobacteria on lentil. *World Journal of Microbiology and Biotechnology* 23, 435-441
- Son HJ, Kim YG, Lee SJ (2003) Isolation, identification and physiological characteristics of biofertilizers resources, insoluble phosphate solubilizing bacteria. *Korean Journal of Microbiology* 39, 51-55
- Stucki G, Jackson TA, Noonan MJ (1984) Isolation and characterisation of Serratia strains pathogenic for larvae of the New Zealand grass grub Costelytra zealandica. New Zealand Journal of Science 27, 255-260
- Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology Evolution 24, 1596-1599
- Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Research* 22, 4673-4680
- Trought TET, Jackson TA, French RA (1982) Incidence and transmission of a disease of grass grub Costelytra zealandica in Canterbury. New Zealand Journal of Experimental Agriculture 10, 79-82
- Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52, 487-511
- Williams ST, Dharpeand ME, Holt JG (2003) Bergey's Manual of Systematic Bacteriology (Vol 1), Williams and Wilkins Co., Baltimore, USA, pp 409-515
- Young SD, Townsend RJ, O'Callaghan M (2009) Bacterial entomopathogens improve cereal establishment in the presence of grass grub larvae. *New Zealand Plant Protection* **62**, 1-6