
 
Received: 17 August, 2009. Accepted: 1 October, 2010. Invited Mini-Review 

Pest Technology ©2011 Global Science Books 

 
Biological Control of Weeds with Mycoherbicides 

in the Age of Genomics 
 

Gavin J. Ash * 

                                                                                                    
E.H. Graham Centre for Agricultural Innovation (NSW Department of Industry and Investment and Charles Sturt University), PO Box 588 Wagga Wagga NSW 2650 Australia 

Corresponding author: * gash@csu.edu.au 
                                                                                                    

ABSTRACT 
Mycoherbicides offer an innovative approach to the management of weeds in disturbed environments using formulated fungal 
phytopathogens. The efficacy of these mycoherbicides could be improved in the future through the application of genomics (the study of 
genes and their interactions) to both the target and the biological control agent. In this review, an update is given on approaches to genetic 
enhancements of mycoherbicides and how a knowledge of, and recent advances in, genomics could be used to improve this process. 
Specific examples are given of novel approaches that could be used. Genetic modification of mycoherbicidal agents has been shown to be 
possible, but caution is warranted in terms of public perception and the acceptance of these approaches in the wider community. 
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INTRODUCTION 
 
Bioherbicides are a form of inundative biological control 
that are used to manage weeds, often in disturbed environ-
ments, where they must provide rapid, effective and econo-
mic weed control (Weston 1999). The active ingredient in 
the formulated product is a phytopathogenic microorganism. 
As the majority of plant pathogens are fungi, it is not sur-
prising that most of the pathogens investigated are fungal, 
although there are examples of the use of bacteria, oomy-
cetes and viruses (Imaizumi et al. 1992; Nishino et al. 
1997; Anderson and Gardner 1999; DeValerio and Charu-
dattan 1999; Daigle et al. 2002; Weissmann et al. 2003; 
Charudattan and Hiebert 2007; Ferrell et al. 2008). These 
organisms may be formulated in various ways but, in most 
cases, they are applied in a similar fashion as synthetic her-
bicides using conventional application technology (Gossen 
et al. 2008). 

Genomics is a term which was coined in 1987 (McKu-
sick and Ruddle 1987) to describe the quantitative study of 
genes (both regulatory and non-coding sequences). As com-
pared to genetics in which individual genes and their in-
heritance is studied, genomics is the study of all of the 
genes in the genome and their interactions. It encompasses 
functional, structural and comparative genomics. The study 
of genomics complements transcriptomics (RNA and gene 
expression), proteomics (protein expression) and metabolo-
mics (metabolites and metabolic networks). Genomics has 
been made possible by the large-scale sequencing of 
genomes of a variety of organisms. The first fungal genome 
to be fully sequenced was that of the brewer’s yeast, Sac-
charomyces cerevisiae, in 1996 (Goffeau et al. 1996). This 
was followed by the sequences of Schizosaccharomyces 

pombe and Neurospora crassa (Wood et al. 2002; Galagan 
et al. 2003). The sequencing of fungi associated with plant 
diseases has been initiated more recently. Despite these stu-
dies, sequencing of fungal genomes has been comparatively 
slow (Galagan et al. 2005). There are currently over 85 fun-
gal genomes (species and isolates) that have been, or are 
being, sequenced including plant and animal pathogens. 
The full list of publicly available fungal genomes is avail-
able from the website of the Fungal Genome Initiative of 
the Broad Institute1. Currently available sequence data from 
non-filamentous fungi such as yeasts or filamentous, non-
plant pathogenic fungi may not be overly useful in the 
search for targets genes involved in plant pathogenesis as 
they may not contain homologs of pathogenicity or viru-
lence genes (Xu et al. 2006). For example, the two closely 
related species, Aspergillus fumigates and A. fischerianus 
have 9226 homologs with 700 genes with no homology be-
tween the two species (Nierman et al. 2005). Of particular 
interest to scientists developing mycoherbicides are the gen-
omes of F. oxysporum and Sclerotinia sclerotiorum, as both 
species have been considered as candidate mycoherbicides 
(Riddle et al. 1991; Boyette et al. 1993; Bourdot et al. 
1995; Cornwallis et al. 1999; Thomas et al. 1998; Marley 
and Shebayan 2005). F. verticillioides is also of interest as a 
direct comparison to F. oxysporum notwithstanding the dif-
ferences in closely related species noted above. The speed 
of identification of genes involved in plant/pathogen inter-
actions will increase as sequencing information of more 
plant pathogenic fungal genomes becomes available in the 
future (Xu et al. 2006). This will increase our knowledge of 
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pathogen virulence and may lead to better understanding of 
regulation of plant pathogen interactions in bioherbicides. 
The American Phytopathological Society has compiled a 
list of priority plant pathogens for sequencing, although 
none of these contain any potential mycoherbicides2. So 
how can genomics assist the research into mycoherbicides? 
Genomic information on both hosts and pathogens could be 
used to improve the efficiency of studies of genetic diver-
sity, the production of methods for the tracing and quan-
tification of pathogens and provide insights into methods 
for selection and improvement of mycoherbicide candidates 
in the future. This review is concerned with the impact of 
genomics on genetic diversity and strain improvement in 
the production of mycoherbicides. Improvement in strains 
is framed within the context of how new strains of fungal 
pathogens are produced within agroecosystems, as outlined 
by Stukenbrock and McDonald (2008). 
 
GENETIC DIVERSITY 
 
Knowledge about the genetic diversity of the target weed is 
important so that a representative population of the target 
can be chosen in pathogenicity and host range testing. This 
will lead to greater field efficiency and reduced variability 
in management of weeds through the use of mycoherbicides. 
The assessment of diversity of the target weeds in mycoher-
bicide programs is becoming common place and is being 
undertaken using a range of molecular marker approaches 
(Okoli et al. 1997; Ash et al. 2003, 2004). The usefulness of 
DNA markers can be assessed in terms of their genotyping 
error (a reflection of reproducibility and clarity), their infor-
mativeness (a measure of their polymorphic information 
content) and the multiplex ratio (the number of loci which 
can be assayed simultaneously). The types of markers that 
are commonly used include Restriction Fragment Length 
Polymorphisms (RFLP), Random Amplified Polymorphic 
DNA detection (RAPD), Simple Sequence Repeats (SSR), 
Amplified Fragment Length Polymorphisms (AFLP), Sin-
gle Nucleotide Polymorphisms (SNPs) and Diversity Array 
Technology (DArT). A discussion of the types of markers 
available and their strengths and weaknesses can be found 
in Sunnucks (2000) with update on DArT in Xie et al. 
(2006). These of markers vary in their reproducibility, level 
of polymorphism and cost. Genomic studies are starting to 
be used to improve the search for appropriate markers for 
identification, genetic variation and phylogenetics (Freds-
lund et al. 2006; Abdelkrin et al. 2009; Duran et al. 2009). 
These approaches can use whole genome sequences or ran-
dom sequences generated by shotgun sequencing (Abdel-
krin et al. 2009). Sequencing technologies are also relevant 
to pathogen studies. Fungi often have ambiguous morpholo-
gical characters and so the use of genetic fingerprinting and 
sequencing can assist in their identification (Berthier et al. 
1996; Tessmann et al. 2001; Yourman and Luster 2004; Ash 
2010; Ash et al. 2010). Charudattan (2001) has suggested 
that when studies of the genetic diversity of the host and 
pathogen are combined they may help in predicting suita-
bility of weed/pathogen systems for biological control by 
either inundative or classical methods. Comparative geno-
mics could also be used to improve the efficiency of pro-
duction for systems of tracking and persistence of mycoher-
bicide candidates. Currently these systems are created using 
exhaustive searches for suitable markers and the creation of 
quantitative PCR (Zhou et al. 2004; Dauch et al. 2006; Pitt 
et al. 2006). 
 
STRAIN SELECTION AND IMPROVEMENT 
 
The earliest successes of bioherbicides were with the use of 
Phytophthora palmivora and Colletotricum gloeosporioides 
f.sp. aeschynomene (Tebeest et al. 1992). Since then there 

                                                   
2http://www.apsnet.org/members/ppb/PDFs/MicrobialGenomicsSeq08revis
ionfinal.pdf 

have been a number of products commercialised (Charu-
dattan 2001; Bailey et al. 2010) as well as numerous exam-
ples of pathogen-weed combinations which had been repor-
ted as having potential as bioherbicides (Charudattan 2001; 
Ash 2010). For a biological control agent to have potential 
as a mycoherbicide there are a number of desirable charac-
teristics which have been identified including the ability to 
grow and sporulate on artificial media, genetic stability and 
host specificity. Host specificity is a consequence of patho-
genicity (as defined by Shaner et al. (1992)). A number of 
workers have identified the lack of pathogenicity and nar-
row host range of many mycoherbicides as reasons for low 
success rates of mycoherbicides in terms of commercialisa-
tion (Auld and Morin 1995; Hallett 2005; Sands and Pil-
geram 2009). Virulence, on the other hand, is a quantitative 
character which refers to the ability of the pathogen to 
cause disease under certain environmental conditions. Viru-
lence is a trade-off between transmission between hosts and 
replication within the host (Anderson and May 1982). A 
highly virulent pathogen will replicate quickly within a host 
leading to its death, thus leaving less time for spread be-
tween hosts, that is, it has a reduced parasitic fitness or ag-
gressiveness (Shaner et al. 1992). This may then reduce the 
likelihood of an epidemic. In most cases this is overcome in 
mycoherbicides by the application of overwhelming num-
bers of propagules (Templeton et al. 1979). Therefore, in 
the case of mycoherbicides, the selection for virulence of 
the fungal pathogen is paramount to the efficacy of the bio-
herbicide (Charudattan 1988; Ash 2010) as parasitic fitness 
or aggressiveness is of secondary importance due to the in-
undative application of mycoherbicides. 

In many cases the organisms used in bioherbicide re-
search are endemic pathogens that have co-evolved with 
their host (Hallett 2005). This co-evolution between patho-
gen and host could limit their potential as mycoherbicides, 
as a highly virulent pathogen with high specificity would be 
committing suicide in an evolutionary sense (Gressel 2001; 
Rector 2008). This would be the case in host populations 
with low levels of resistance as these populations are gene-
rally thought to harbour less-virulent pathogens (Thrall and 
Burdon 2002) whereas more virulent pathogens would pre-
dominate on resistant hosts (Barrett et al. 2007). Although 
hypervirulent individuals may be produced within sexually 
reproducing pathogen populations, the chance of isolating a 
hypervirulent pathogen is probably low as they would have 
the propensity to kill seedlings and so would be often 
missed in surveys. Even when pathogens and the host have 
co-evolved, introduction of pathogens into new environ-
ments may lead to significant disease and yield losses in 
naïve host populations (Stukenbrock and McDonald 2008). 
Historical examples include the introduction of Phytoph-
thora infestans into Ireland (Goodwin et al. 1994) and 
stripe rust into Australia (Wellings 2007). This has also 
shown to be true in the case of classical biological of weeds, 
where the release of pathogens of exotic weeds has been 
highly successful in some cases (TeBeest 1996). For exam-
ple, the biological control of skeleton weed in Australia by 
the rust fungus Puccinia chrondrillina has been a spectacu-
lar success in Australia (Cullen 1985). In many cases it is 
assumed that host/pathogen relationships have arisen 
through co-evolution, in the absence of data to the contrary. 
However, genomic approaches have recently been used to 
study these relationships and have shown that a number of 
systems may have evolved differently. Stukenbrock and 
McDonald (2008) proposed co-evolution (host-tracking) as 
one of the four most likely scenarios for the emergence of 
new plant pathogens. The other mechanisms are host shift 
(when a pathogen infects a new, previously unaffected host), 
horizontal gene transfer3 (when there is genomic transfer 
                                                   
3 Kado CI (2009) has suggested that intergenetic transfer between 
organisms within a domain should be referred to as lateral gene transfer 
and that horizontal gene transfer be restricted to gene transfer between 
domains. To prevent confusion, in this review lateral and horizontal gene 
transfer will be considered synonymous. 
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which affects host range) and hybridization (the fusion of 
whole genomes) (Stukenbrock and McDonald 2008). Any 
of these changes can lead to new host ranges and heigh-
tened virulence. 

Stukenbrock and McDonald (2008) provided a number 
of examples where there is evidence for host shift or host 
jump has occurred including in Rhyncosporium secalis on 
barley and Magnaporthe oryzae on weeds of rice. In the 
case of R. secalis on barley, evidence for the host jump has 
been provided through phylogenetic analysis of a toxin-en-
coding/elicitor gene and several house-keeping genes 
(Brunner et al. 2007; Zaffarano et al. 2008). This host jump 
was facilitated by domestication of host crop plants, anthro-
pogenic modification of the environment and the worldwide 
distribution of the pathogen. Although not specified by Stu-
kenbrock and McDonald (2008) this host jump may have 
arisen by a number of means including horizontal gene 
transfer. 

Horizontal gene transfer is common in prokaryotes 
(Amabilecuevas and Chicurel 1992) to the point that it has 
been suggested that the prokaryotic community could be 
viewed as a single multicellular organism with continuous 
movement of genetic material (Sonea 1991). Naturally oc-
curring horizontal gene transfer has also been documented 
between prokaryotes and eukaryotes (Binns and Thoma-
show 1988) and between eukaryotes (Roulin et al. 2009). 
Horizontal gene transfer can occur naturally or can be per-
formed in the laboratory. 

There are a number of techniques which have been suc-
cessfully used in the introduction and genomic integration 
of foreign DNA into fungi including electroporation, the use 
of polyethylene glycol and calcium chloride, lithium acetate, 
restriction enzyme mediated integration, biolistics and the 
Agrobacterium-mediated transformation (Marek et al. 1987; 
Penttilä et al. 1987; Dickman 1988; Lorito et al. 1993; Red-
man and Rodriguez 1994; de Groot et al. 1998; Zeilinger 
2004). Agrobacterium–mediated transformation often gives 
the highest transformation efficiencies of the aforemen-
ioned protocols (de Groot et al. 1998; Michielse et al. 2008) 
with frequencies of 200–250 transformants per 1 × 106 
conidiospores of Aspergillus awamori reported by Michi-
else et al. (2008). These protocols can be used to introduce 
foreign DNA or to produce mutants from insertions which 
disrupt genes. Dickman et al. (1989) demonstrated that the 
introduction a single gene for cutinase production from 
Fusarium solani f.sp. pisi into a Mycospharella species 
could transform this fungus from a wound infecting patho-
gen into a pathogen that could infect papaya through an 
intact cuticle. Since this publication there have been numer-
ous reports of the transformation of fungi to increase host 
range and virulence (Yakoby et al. 2000; Screen et al. 2001; 
Cohen et al. 2002; Wang and St. Leger 2007). Even though 
we have made these advances, many of the fundamental 
questions pertaining to host range, pathotype evolution and 
the drivers for fungal symbiotic lifestyles remain (Yarden et 
al. 2003). 

Genetic modification of fungi to increase virulence and 
to reduce the reliance of the organisms on the environment 
during the infection process has been suggested by a num-
ber of authors as the future of bioherbicides (Amsellem et 
al. 2002; Gressel et al. 2005; Rector 2008); however, the 
science underpinning these approaches is still in its infancy. 
The modification or insertion of enzymes of fungal patho-
gens involved in plant penetration, such as cell wall deg-
rading enzymes and cutinases, does not always lead to in-
creased virulence due to the considerable genetic redun-
dancy in these genes (Xu et al. 2006). There are few exam-
ples in the literature of fungal transformation to improve the 
efficacy of mycoherbicides. Cohen et al. (2002) reported 
the increased virulence of Fusarium oxysporum using up-
regulation of indole acetic acid production by transforming 
with both iaaH and iaaM. The reported doubling of viru-
lence was not considered sufficient to warrant the use of 
this transformation in the field (Meir et al. 2009). However, 
Amsellem et al. (2002) reported a nine-fold increase in 

virulence and a reduced requirement for moisture in Col-
letotrichum coccoides, a bioherbicidal candidate against 
Abuliton theophrasti, when using the NEP1 gene from F. 
oxysporum. The Nep 1 gene encodes the Nep 1 protein, a 24 
kDa necrosis-eliciting protein (Bailey et al. 1997). Amsel-
lem et al. (2002) reported that although the gene improved 
the virulence of the organism it also increased the host 
range to tomato and tobacco, an undesirable characteristic 
in this case. Additionally, the protein did not increase the 
bioherbicidal effect of Pseudomonas syringae on asteraceae 
weeds (Gronwald et al. 2004). Dauch et al. (2006) could 
not reproduce the increased virulence to A. theophrasti 
when using the C. coccoides strain T2O-a when compared 
to the wild type strain. Furthermore, they could not detect 
the gene expression in culture or in planta. They suggested 
the gene was being silenced. Amsellem et al. (2002) noted 
that over expression was inhibited within F. oxysporum and 
hypothesised that this would not be the case in unrelated 
fungi. Bailey et al. (2002) demonstrated over expression of 
the Nep 1 protein in F. oxysporum f.sp. erythroxyli in high 
nutrient, liquid formulation. The isolate had the native gene 
disrupted by insertional mutagenesis and a new construct 
inserted. This then supports the hypothesis of Amsellem et 
al. (2002) and Meir et al. (2009) that the presence of a 
native gene may lead to silencing when additional copies of 
the gene are inserted. Meir et al. (2009) went further to hypo-
thesise that Nep 1 gene could be used in fungi that either do 
not possess the gene for Nep 1 protein production or it 
could be used in fungi where the gene had been silenced 
(sensu Bailey et al. (2002). Care should be taken with this 
extrapolation, however. In the case of transformation of C. 
coccoides, the pathogen undergoes a biotrophic phase for a 
period of up to five days post-inoculation, therefore the 
constitutive expression of a phytotoxin may reduce the 
biomass of the fungus and could interfere with the plant-
pathogen interaction at this stage. This would likely lead to 
a reduced level of symptom expression. Furthermore, al-
though Bailey et al. (2002) demonstrated over expression of 
Nep 1 in fermentation, this did not lead to increased viru-
lence in the host plant coca. As the authors noted, the regu-
lation of the production could be dependent on a range of 
factors including transcription, translation and posttrans-
lational effects which may affect protein configuration, sta-
bility and excretion. Other genes for a range of polyketide 
synthetases have been identified in a number of plant patho-
genic fungi (Xu et al. 2006) which could also be useful in 
selectively increasing virulence. Use of these types of viru-
lence factors would require the use of inducible promoters 
which are aligned to the fungal/plant interaction being tar-
geted. As noted by Ash (2010), the host range of some 
mycoherbicidal agents could be modified by manipulation 
of genes such as NADPH oxidase genes which are impli-
cated in the regulation of symbiosis in some plant/pathogen 
interactions (Tanaka et al. 2006). The use of comparative 
genomics will also allow the identification of new families 
of genes that could be used in the enhancement of myco-
herbicides. Recently, de Jonge and Thomma (2009) used 
publicly available sequence data of fungi to identify puta-
tively secreted LysM-containing proteins. They suggested 
that these may have a role in nullifying host resistance. All 
of these strategies rely on the transformation with relatively 
small segments of DNA, which may lead to erratic expres-
sion due to positional effects and copy number-dependent 
transcription (Peterson 2007). These shortcomings could be 
overcome by the use of yeast artificial chromosomes 
(YACs) (Burke et al. 1987) which can be used to introduce 
DNA fragments up to 2 Mb in size (Peterson 2007). These 
chromosomes can be modified by site-specific recombina-
tion (Rothstein 1995). The introduction of these YACs into 
cells can be problematic, requiring microinjection (Peterson 
2007). However, microinjection has been shown to be fea-
sible in fungal systems (Correa and Hoch 1993; Jackson 
1995). 

Changes in virulence may also be a result of horizontal 
transfer of whole chromosomes in fungi. It is common in 
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many fungi for there to be polymorphism in chromosome 
number between and within species (Covert 1998). Super-
numerary chromosomes (also known as B chromosomes, 
dispensable chromosomes or minichromosomes) are com-
mon in many fungi and vary in size from 0.7 Mb up to 4.9 
Mb (Covert 1998). These supernumerary chromosomes 
may carry clusters of pathogenicity factors like toxin genes 
as well as genes for characters such as rhizosphere competi-
tiveness (Hatta et al. 2002; Rodriguez-Carres et al. 2008; 
Aboukhaddour et al. 2009). Recently, Ma et al. (2010) re-
ported the horizontal transfer of four entire chromosomes 
between species of Fusarium which contained transposon-
rich regions and regions associated with pathogenicity. 
They went onto demonstrate that the transfer of two line-
age-specific chromosomes could be correlated with the 
emergence of changed pathogenicity of the recipient formae 
specialis of Fusarium oxysporum. 

The fourth scenario for increases in virulence or chan-
ges in host range listed by Stukenbrock and McDonald 
(2008) was hybridisation. There are a number of examples 
of naturally occurring interspecific hybridisation in fungi 
and oomycetes which have lead to new host ranges or in-
creases in virulence (Schardl and Craven 2003). In plant 
pathogenic fungi and oomycetes, there are a range of 
reports of hybridization including those in Pythium species 
(Nechwatal and Mendgen 2009), Puccinia lagenophorae 
(Morin et al. 2009), Cronartium ribicola (Joly et al. 2006), 
Melampsora species (Newcombe et al. 2000) and Phytoph-
thora species (Brasier et al. 1999; Bonants et al. 2000). 
Barrett et al. (2007) demonstrated the likely origin of a line-
age of Melampsora lini from a hybridisation event which 
resulted in an increase in virulence in 18% of host lines 
compared with the presumed parental lineage (Barrett et al. 
2007). They suggested that the genome arising from the 
lineage from a different host may not carry potential aviru-
lence elicitors. Therefore, hybridisation of closely related 
fungi with different host ranges may provide an avenue for 
the production of new virulent mycoherbicides. 

Forced hybridisation by the fusion of protoplasts has 
been attempted in various fungi and actinobacteria (Agbessi 
et al. 2003; Aiuchi et al. 2007; Balasubramanian and Lali-
thakumari 2008). Fusion of protoplasts of Helminthospo-
rium graminearum subspecies echinochloe with Curvularia 
lunata has been used in an attempt to complement the 
pathogenicity and spore production abilities of the two 
fungi (Zhang et al. 2007). This group demonstrated the 
fusion of the isolates using PCR, but suggested that the 
majority of the DNA arose from the Helminthosporium iso-
late. Some of the resultant fusants had increased sporulation 
and production of the phytotoxin ophiobolin A in culture 
which adequately controlled Cyperus difformis in the field. 
Increases in the biocontrol efficacy of species of Tricho-
derma have been reported by both interspecific hybridisa-
tion and self-fusion of protoplasts (Ogawa et al. 1989; 
Prabavathy et al. 2006). Self fusion of protoplasts would 
lead to polyploidy in the resultant fusants. Polyploidy is 
thought to be common in plants and fungi (Masterson 1994; 
Deacon 2006). It often gives rise to cascades of novel gene 
expression patterns which invariably leads to new pheno-
typic variation arising from over expression of genes, silen-
cing of others or completely unpredicted outcomes. In fungi, 
polyploids, aneuploids and heterokaryons occur. Smith 
(1987) first hypothesised that Saccharomyces cerevisiae 
arose from polyploidy. By using genomics, Wolfe and 
Shields (1997) presented further support for the genome 
duplication (tetraploidy) of S. cerevisiae followed by mas-
sive gene deletion. Furthermore, levels of ploidy have been 
shown to affect the expression and the susceptibility to 
virally-mediated toxin in yeasts (McBride et al. 2008). Bar-
rett et al. (2007) postulate that increased heterozygosity in 
polyploids may lead to a greater chance of recognition by 
the host and thus reduced virulence. There are currently no 
records on the improvement of mycoherbicides using in-
creased or altered ploidy levels. Notwithstanding the com-
ments of Barrett et al. (2007), it would seem that the inves-

tigation of changes in virulence due to changes in ploidy 
may be an interesting avenue of research. 
 
SUMMARY 
 
Genomics, therefore, offer the potential for a greater under-
standing of host pathogen interactions and, perhaps through 
this understanding, a greater opportunity to increase the 
effectiveness of mycoherbicides. The larger opportunities 
lie in the genetic manipulation of the pathogen. The interest 
in developing transgenic biocontrol agents has been limited 
due to the perceived hazards which include increased host 
range of the organism, mutation and spread of the trans-
genes by asexual or sexual recombination (Gressel 2001). 
In an effort to allay these fears, Gressel (2001) suggested 
the use of a number of transgenic mitigator genes as failsafe 
mechanisms in hypervirulent fungi. Amsellem et al (2002) 
suggested that the use of these failsafe mechanisms would 
be a prerequisite for the release of any hypervirulent outside 
of containment facilities. Additionally, although the release 
of genetically modified pathogens with increased virulence 
and/or altered host range is theoretically possible, there are 
a number of legislative, social and ethical considerations 
pertaining to the use of the technology. 

Dealings with genetically modified organisms (GMOs) 
are regulated by different systems in different countries and 
often involve a number of agencies and legislation. Of 
particular relevance to researchers contemplating the use of 
genetically modified mycoherbicides is the legislation sur-
rounding agricultural and veterinary chemicals, biosecurity 
and plant protection. The regulatory instruments of Austra-
lia, New Zealand, the European Union and the United 
States of America are summarised by Henderson and Mur-
phy (2007). Additionally there are a number of international 
instruments governing the production and release of GMOs 
including the Convention on Biological Diversity (CBD)4, 
the International Plant Protection Convention (IPPC)5 and 
the Sanitary and Phytosanitary Agreement of the World 
Trade Organisation6. Supplementary to the CBD is the Car-
tagena Protocol on Biosafety, which seeks to protect bio-
logical diversity from the potential risks posed by living 
modified organisms resulting from modern biotechnology. 
Of the parties to the protocol, Australia and the United 
States are notable exceptions. Most of these international 
and domestic instruments use a precautionary approach to 
dealings with GMOs. The implications of the release of an 
enhanced biological control are not only of importance to 
the country of origin but may also have ramifications for 
other countries in which the target may be native (Hender-
son and Murphy 2007; Rector 2008). If it is, as Henderson 
and Murphy (2007), believe that genetic improvement of 
biological control agents is inevitable, then the negative 
perceptions of segments of the community need to be over-
come. Public perceptions of genetically modified food vary 
depending on the country in which the surveys are under-
taken with more negative perceptions predominating in Eu-
rope, ambivalence in Britain and acceptance in the United 
States (Gaskell 2004; Spence and Townsend 2007). While 
the research on transgenic mycoherbicides continues in bio-
secure premises, trust between biocontrol scientists and the 
community needs to built through dialogue about the risks, 
safety and the flow of benefits from such research. The 
maintenance or restoration of trust between scientists (or 
scientific institutions) and the public is vital to the conti-
nued scientific innovation (Barnett et al. 2007). It is a com-
mon belief that scientists do not put enough effort into in-
forming the public and they should listen to the public’s 
opinion7. By building trust between the groups the gap in 
perspectives between scientists and the lay community will 
be reduced (Barnett et al. 2007). 
                                                   
4 http://www.cbd.int/ 
5 https://www.ippc.int/IPP/En/default.jsp 
6 http://www.wto.org/english/tratop_e/sps_e/sps_e.htm 
7http://ec.europa.eu/public_opinion/archives/ebs/ebs_224_report_en.pdf 
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Rector (2008) proposed that almost any heritable trait 
can be modified using molecular techniques, if there is suf-
ficient genetic information about the system. Genomics and 
the other “omics” can be used to supply this information. It 
is clear that genomic information and its application in 
mycoherbicides is its infancy. However, by carefully ana-
lysing what has occurred in “natural” systems, it is possible 
to define new genetic directions in research which may be 
able to improve the utility and success of mycoherbicides in 
the future. However, simply because we have the technol-
ogy to do this work is not enough. There must be a clear 
strategy to engage the lay community in the developing re-
search, a commitment of the scientists to the highest pos-
sible ethical standards in performing the research and an 
early assessment of the feasibility of release of the agent to 
assure the greatest chance of success of the research. 
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