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ABSTRACT 
Forest health, especially insect defoliation monitoring in forest using direct sampling and visual estimation has been only moderately 
successful due to its cost, time required for sampling, and most importantly the need to collect data immediately before and after an 
extreme event. However, remote sensing techniques offer timely, up-to-date, and relatively accurate information for sustainable and 
effective management of forest health. In this paper, we discuss the different approaches including the remote sensing platforms and 
techniques that have been used for assessing insect defoliation and its implications for detecting and monitoring mopane worm defoliation 
of mopane woodland, highlighting their strengths and weakness. Research gaps in the detection of insect defoliation with remote sensing 
are highlighted and future directions of research are also proposed. 
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INTRODUCTION 
 
An important component of forest ecosystem is its health 
status and the impact it has on sustainable growth. Recent 
evidence suggests that new damaging agents are appearing 
at an increasing rate which could affect the future sustaina-
bility of forest industries (Wulder and Franklin 2003). 
While many of the past impacts of damaging agents such as 
insects on forest woodland have been disastrous, mopane 
worm, an important defoliator of mopane woodland in Sou-
thern Africa exhibit a different scenario. As a result, Imbra-
sia belina (mopane worm) is widely distributed (Fig. 1) and 
consumed in Southern Africa because of its nutritional val-
ues and sold to generate income (Timberlake 1996). 

However, while the depletion of worms derived from 
mopane woodland have been reported in different areas, 

none of these depletions have been attributed to the im-
pacts of the worms on the vitality and productivity of their 
host. Mopane defoliation is one of the serious impacts of 
the worm on its host. Furthermore, the absence of mopane 
worms from certain regions of mopane veldt has not been 
satisfactorily explained. It may be due to the absence of 
necessary nutrients that attract the worms to the leaves of 
the tree. Defoliation process as a result of the worms if not 
well managed can in the long run lead to the extinction of 
the tree and hence the worms within the region. In an 
effort to minimize the potential loss of I. belina (hereafter 
referred to as mopane worm) in mopane woodland of Sou-
thern Africa, an integrated management strategy is needed 
combining detection, mapping and monitoring methods. 
Moreover, resource managers need to know the impacts, 
vulnerability and suggest possible management practices 
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that will enable efficient and sustainable use of the resour-
ces emanating from mopane woodland. 

Information on the extent and severity of mopane defo-
liation is required for a wide variety of forest planning, 
management, and modeling activities. Mapping mopane 
defoliation will also aid sketch mapping surveys and also 
help in reporting and assessing the impacts of the defoli-
ation on the health and productivity of the woodland. Cur-
rently, there are no specific methods of mapping mopane 
defoliation. 

The objective of this paper therefore is to discuss the 
different approaches including the remote sensing plat-
forms and techniques that have been used for assessing 
insect defoliation and its implications for detecting and 
monitoring mopane worm defoliation of mopane woodland 
highlighting their strengths and weakness. Firstly, we review 
the effects of insect defoliation on trees and the conventi-
onal ways in which they are assessed. Thereafter we con-
sider different remote sensing platforms that have been used 
in detecting insect defoliation, highlighting the strengths 
and weaknesses in detecting, mapping and monitoring 
mopane woodland defoliation. Thirdly, the remote sensing 
techniques that can be used for accurate monitoring are pre-
sented. Finally, we discuss various challenges that might 
occur while using remote sensing to detect, map and moni-
tor defoliation in mopane woodland by mopane worms sug-
gesting possible solutions to them. 
 
EFFECTS OF INSECT-CAUSED TREE 
DEFOLIATION ON VEGETATION PRODUCTIVITY 
 
The primary function of leaves in plants is to manufacture 
sugars and carbohydrates (Morgan et al. 2010). Sugars and 
carbohydrates are the basic food or energy that plants use 
for all metabolic activities such as growth, root develop-
ment, flower and seed production, disease resistance etc. 
Leaves also provide many indirect benefits such as emitting 
oxygen, screening out particulates and other air pollutants, 
intercepting precipitation to minimize erosion and shading 
the ground to modify surface temperatures (Morgan et al. 
2010). When insect defoliation occurs in a particular tree, 
the effects range from a slight reduction in vigor to total 
death (Hall et al. 2003). Insect defoliation harms plants by 
eliminating or limiting their food production capability 
(Hall et al. 2003). The refoliation process, which frequently 
occurs immediately after defoliation, also requires energy 

for budbreak and leaf expansion, which causes further 
depletion of stored food reserves (Hall et al. 2003). 

The inability of the tree to manufacture food (energy) 
together with the depletion of stored food weakens the tree 
and results in reduced growth, stunted, pale-green new 
leaves and possibly twigs and branch dieback (Kantola et 
al. 2010). Insect defoliation also affects the morphological 
and physiological characteristics of trees, and it is these 
characteristics that govern how trees absorb and re�ect 
light (Hall et al. 2003). The production of protective sub-
stances that aid in disease resistance may be inhibited 
(Hall et al. 2003). It is predicted that the frequency and 
severity of insect defoliation outbreaks could increase in 
response to climatic warming, further magnifying their 
effects (Fraser and Latifovic 2005). 

Mopane tree defoliation follows the same pattern as 
other insect defoliators and when the outbreak occurs, 
about 200 mopane worms feed on a single tree leading to 
90% of mopane trees if not all left without leaves within a 
mopane woodland (Ditlhogo et al. 1996). Moreover, Stack 
et al. (2003) observed that mopane trees do not contain 
any hydrolysable tannin which is widely accepted as being 
the primary defence compounds against insects. This ex-
plains the close association between mopane worms and 
mopane trees. While mopane woodland often recover 
within a relatively short period after defoliation with little 
mortality, continuous defoliation may lead to deplorable 
long term effect that may be fatal. 

Although, no report of eradication of mopane trees as 
a result of defoliation in any region of mopane veldt is 
known yet, studies have proved that there are long term 
effects. Hrabar et al. (2009) noted that at present, defolia-
tion has no effect on mopane plant size; however, it has 
potential negative effects on stored resources which cha-
racteristically result in regrowth with smaller and or fewer 
leaves. Styles and Skinner (2000) further explained that 
heavily defoliated mopane trees tend to lose nutrient and 
greatly reduced in age over years. Having discussed the 
(possible) effects of mopane worm defoliation on mopane 
woodland, it is important to highlight the linkage between 
(biophysical and biochemical) indicators of mopane wood-
land productivity and remote sensing. Knowledge of this 
will help for accurate detection of defoliation level within 
the woodland. 

 
CONVENTIONAL METHODS OF ASSESSING AND 
MONITORING OF INSECT-CAUSED TREE 
DEFOLIATION 
 
Defoliation is a general stress response, and it is closely 
linked to biophysical and biochemical indicators hence 
they are used as conventional methods of detecting insect 
defoliation (Lee et al. 2010). Measuring forest biophysical 
characteristics aims at documenting forest integrity in 
many aspects, such as structural, functional and species 
diversity (Kumar et al. 2001). However, these measure-
ments often depend on extensive and expensive �eldwork, 
encompassing a restricted study area. Remote sensing 
enables monitoring studies in a wide area at constant time 
periods (Seidl et al. 2011). 

The alliance between remote sensing techniques and 
biophysical indicators could be valuable to studies on 
detecting, mapping and monitoring defoliation process in 
forests. To fully understand how remote sensing can be 
used for detecting, mapping and monitoring insect defoli-
ation especially the mopane woodland defoliation, we 
need to discuss the biophysical and biochemical variables 
that affect mopane trees focusing on the two main ones: 
Leaf Area Index (LAI) and chlorophyll content. Under-
standing these biophysical indicators could help in pro-
viding more information on the techniques and platforms 
of remote sensing that can be applied. 

 
 
 

 
Fig. 1 The distribution of mopane woodland in southern Africa. 
Source Marias (1996), with kind permission of the author. 
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Leaf Area Index 
 
The use of biophysical change metrics, such as LAI change, 
has been proved to provide a more flexible and general 
defoliation mapping method (Hall et al. 2003). Moreover 
researchers have stated that insect defoliation thresholds 
that are based on LAI rather than percent defoliation are 
more meaningful (Malone 2001). LAI is an important vari-
able explaining canopy primary production and can be used 
to infer processes such as photosynthesis, transpiration, 
evapotranspiration and estimate net primary production 
(NPP) of terrestrial ecosystems (Yao et al. 2008). LAI is 
defined as one-half the total surface area of leaves per unit 
ground area. The estimation of LAI from remote sensing 
measurements has received much attention. For example, a 
simplified semi-empirical reflectance model for estimating 
LAI of a green canopy was introduced by Clevers (1997). 
The widely used crown condition variables are closely 
related to LAI, but this has received little attention. As such, 
LAI is increasingly desired as a spatial data layer (i.e., map), 
to be used as input for modeling biogeochemical processes 
(Thenkabail et al. 2000). 

The LAI measurements are relevant for comparing the 
condition of differently damaged stands and can therefore 
be used in forest monitoring practice (Thenkabail et al. 
2000). Measuring LAI on the ground is difficult and re-
quires a great amount of labor and cost (Kumar et al. 2001). 
To produce a LAI map of a large area, a model relating field 
data with remote sensing data is typically developed, the 
model is inverted, and the remote sensing data are then used 
to extrapolate that relationship to the landscape (Hall et al. 
2003). Many studies have sought to establish relationships 
between LAI and remote sensing data (Thenkabail et al. 
2000; Kumar et al. 2001; Yao et al. 2008). Most of these 
studies have relied on empirical relationships between the 
ground-measured LAI and observed spectral responses, 
although several have used canopy reflectance models 
(Thenkabail et al. 2000; Kumar et al. 2001). 

Although, LAI has not been used in detecting and map-
ping the forest health levels of mopane woodland, especi-
ally during mopane defoliation, it is hypothesized that data 
from LAI could evaluate the vegetation levels before, 
during and after defoliation. When forest health deteriorates 
and the deterioration is affecting canopy volume it would be 
detected as LAI change. Therefore, the healthier the vegeta-
tion, the higher the LAI since LAI increases with healthy 
status of plants (Sanz-Cortiella et al. 2011). Hence, a forest 
that is highly defoliated is expected to have low LAI. LAI 
during the healthy state of mopane woodland (without de-
foliation) is expected to be high since its canopies at this 
stage are still very green and have not been attacked by the 
worms. However it may be difficult to differentiate the 
early defoliation stage of mopane woodland from the 
healthy state using LAI since the canopy at this stage are 
visually indistinguishable from healthy trees of the green 
stage (Ismail et al. 2008). Combination of LAI as well as 
the variation in biochemical concentration in leaves could 
help in dissociating this level. On the basis of the above dis-
cussion, measurement of LAI can help develop a back-
ground to which remote sensing techniques could be 
applied for detecting, mapping and monitoring defoliation 
process in mopane woodland. 

 
Chlorophyll content 
 
Chlorophyll (Chl) content is another biophysical variable 
for detecting insect defoliation on forest (Thomas et al. 
2008). Chl content is a good indicator of vegetation status 
and gross primary productivity because of its direct role in 
photosynthesis (Gitelson et al. 2006). Results in the past 
have showed that Chl content was much lower in wood-
lands that have insect defoliation when compared with 
healthy woodland (Gitelson et al. 2002). When forests are 
subjected to insect defoliation, many physiological changes 
occur, including: reductions in photosynthetic activity 

(Zarco-Tejada et al. 2000), inhibition of Chl formation 
(Sims and Gamon 2002), and an increasing breakdown of 
the chlorophyll molecule (Gitelson et al. 2006). Efficient 
field measurements of these Chl related changes have 
been approximated using measures of Chl fluorescence (a 
measure of photosynthetic activity (Zarco-Tejada et al. 
2000). 

However, this has been costly and time consuming. 
Recently, a relatively cheaper and less time consuming 
approach of detecting defoliation using Chl content over 
large areas involves remote sensing technology (Thomas 
et al. 2008). Narrow wavebands near 700 nm where chan-
ges in Chl absorption are easily detectable have been re-
commended for early detection of forest damage (Pontius 
et al. 2005). 

The Chl in green leaves absorbs light for photosynthe-
sis at wavelengths from 650–660 nm (Thomas et al. 2008). 
For this reason, the red region of the spectrum is most 
useful for detecting the absorption of visible light by the 
Chl pigments. The healthiest vegetation will perform 
photosynthesis efficiently, which requires an abundance of 
Chl pigments. The healthiest vegetation, hence, will ab-
sorb the greatest amount of red light. Most of the infrared 
light incident on a green leaf is reflected at wavelengths 
from 0.7–1.2 �m due to leaf internal scattering. The near-
infrared region of the spectrum is most useful for detec-
ting the reflection of infrared light by the leaves (Pontius 
et al. 2005). The healthiest vegetation will have many 
leaves and will, therefore, reflect the greatest amount of 
near-infrared light. Hence, healthy vegetation is highly 
reflective in the near infrared region and highly absorbent 
in the red region. 

Also narrow-band hyperspectral instruments have the 
capability to identify early signs of defoliation in some 
cases even when symptoms are not visible to the human 
eye (Mohammed et al. 1995; Zarco-Tejada et al. 2000; 
Pontius et al. 2005). Physiologically, this can be explained 
by the tendency of defoliated forest to reduce photosyn-
thetic activity and hence Chl content. Even subtle changes 
in Chl content can alter reflectance patterns in the visible 
and near-infrared (NIR) portions of the spectrum (Pontius 
et al. 2005). 

While Chl content can be measured directly using Chl 
meter such as Minolta SPAD-502 (Konica Minolta, Osaka, 
Japan), most studies using Chl content in monitoring de-
foliation make use of models that are derived from em-
pirical relationships between the ground-measured Chl 
content and observed remote sensing variables. Moreover, 
with high forest canopy cover such as mopane woodland, 
relationships between the reflected electromagnetic radia-
tion and leaf chemistry tend to break down (Pontius et al. 
2005). However Chl content derived from hyperspectral 
remote sensors may be a good indicator of defoliation at 
the green stage of defoliated mopane woodland since the 
photosynthesis activities at this stage is relatively higher 
than when they are totally defoliated. 

Changes in Chl content and LAI have been related to 
variation in photosynthetic activities of deciduous trees 
(Koike 1987). Although they (LAI and Chl content) are 
not direct measurements of vegetation productivity and 
physiological activities, they represent important determi-
nants of productivity and physiological capacity of plants 
(Sims and Gamron 2002). Infact, relationship between the 
two can actually provide information on the health status 
of a particular tree (Kodani et al. 2002). It is expected that 
the knowledge about the dynamics will establish the im-
pact of defoliation on the tree. 

 
RELEVANCE OF REMOTE SENSING IN 
ASSESSING AND MONITORING INSECT-
INDUCED TREE DEFOLIATION 
 
The most reliable method of measuring defoliation is by 
direct sampling (ground based measurement), which is 
obviously unreasonable because of its cost, time required 
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for sampling, and most importantly the need to collect data 
immediately before and after an extreme event (de Beurs 
and Townsend 2008). For large areas, aerial survey is more 
efficient than ground-based measurement. However, ground-
based estimates provide better tree specific information 
(Ciesla and Acciavatti 1982). Information on defoliation 
prior to 1947 was limited to records from ground observa-
tions, memoranda and letters (Dolph 1980). Since 1947, 
when an aerial survey program was initiated, detailed infor-
mation and forest pests especially in North America and 
Europe have been collected annually. The remote sensing 
approach in assessing and monitoring insect defoliation has 
been to relate differences in spectral response to chlorosis 
(yellowing), foliage reddening, or foliage reduction over 
time, assuming that these differences can be interpreted, 
classi�ed, or correlated to damage caused by insect activity 
(Franklin 2001). Remote sensing has been used to generate 
more spatially precise and detailed defoliation maps from 
which its impact on the forest resource could be determined. 

The range of remote sensing applications has included 
detecting and mapping defoliation, characterizing patterns 
of disturbance, modeling and predicting outbreak patterns, 
and providing data to pest management decision support 
systems (Lee et al. 2010). The possibility of forecasting the 
susceptibility and vulnerability of forested areas to insect 
defoliation has also been reported as a tool to provide 
mitigation options to forest managers (Luther et al. 1997). 
These applications were intended to produce information 
products that support pest management planning. The ad-
vantages of applying remote sensing for monitoring insect 
defoliation includes the ability to acquire relatively cheap 
and rapid method of acquiring up to date information over a 
large geographical area (de Beurs and Townsend 2008). 
Also remote sensing has an edge over other methods 
because it is the only practical way to obtain data from 
inaccessible regions; it has ability to be in the form of both 
small and large scales for easy identification and its ability 
to image defoliation in different spectral forms. 

One of the earliest research of using remote sensing to 
monitor defoliation was conducted in north central Washing-
ton and central Idaho in USA using aerial photographs 
(Heller et al. 1981). Ciesla and Acciavatti (1982) deter-
mined that high altitude panoramic color infrared photog-
raphy acquired during the time of peak defoliation could 
consistently differentiate between heavy defoliation, mode-
rate defoliation, and no defoliation. Ever since then, the use 
of remote sensing technology to detect, map and manage 
forest defoliation over large region has been a subject of in-
tense interest (de Beurs and Townsend 2008). 

In mapping areas covered with mopane woodland, 
Sebego and Arnberg (2002) used coloured infrared photo-
graphs and they discovered that though mopane wood-
land extent and distribution can accurately be mapped using 
colour infrared photographs, it may however not be able to 
discriminate defoliated from undefoliated mopane wood-
land. Moreover, using aerial photographs alone will also be 
time consuming and expensive since photographs need to 
be taken for every events of the defoliation process. It must 
however be noted that aerial photographs can form a bases 
on which other forms of remote sensing platform can be 
used in monitoring mopane defoliation. 

 
DEVELOPMENTS IN THE REMOTE SENSING OF 
INSECT-INDUCED TREE DEFOLIATION 
 
The increasing availability of remote sensing and geogra-
phic data has not only helped the detection, mapping, moni-
toring and management of the health of forest ecosystems 
especially those affected by insect defoliation, but also 
proved to be important for the protection of natural resour-
ces and the economy worldwide (Kantola et al. 2010). Dif-
ferent platforms of remote sensing have been used in the 
past for forest defoliation monitoring with varying success. 
A review of the remote sensing methods and platforms that 
have been used for insect defoliation illustrates the degree 

that they have been successful in obtaining information of 
operational relevance (i.e., used by those in forest manage-
ment) (Table 1). We discuss the various platforms and 
their implications in mapping mopane woodland. 

 
Broadband sensors 
 
Various images from remote sensing broadband sensors 
have been found to effectively monitor insect defoliation 
in woodland (Table 1). The resulting data usually classify 
defoliation in terms of light, moderate and heavy defoli-
ation. It has been demonstrated that data from Landsat and 
other synoptic scale sensors have an appropriate spatial 
resolution for monitoring many types of insect defoliation. 
The advantages and pitfalls of Landsat data were recog-
nized early. Williams (1975) expressed concerns about 
Landsat-1’s ability to effectively monitor insect defolia-
tion with only 18-day temporal coverage and the greater 
than 50% chance of cloud cover during an acquisition 
over Pennsylvania. Williams and Stauffer (1978) used 
Landsat imagery acquired before and during gypsy moth 
defoliation. The investigators recognized that agricultural 
features could be mistaken for insect defoliation. More-
over, Williams et al. (1979) evaluated different types of 
vegetation indices on Landsat imagery acquired before 
and during peak defoliation to differentiate between de-
foliation and healthy forest, however, they could not be 
distinguished from healthy forest. Radeloff et al. (1999) 
used Landsat Thematic Mapper (TM) TM data to identify 
the forest attributes that affect jack pine budworm popula-
tion levels and separate the spectral signatures of these 
attributes from those of actual jack pine bud-worm defoli-
ation in Wisconsin. 

Hall et al. (2003) also used Landsat multi-temporal 
change detection approach to map defoliation in insect de-
foliated forest of Canada with results showing consistency 
with other studies earlier carried out using the same plat-
form. The various studies have shown the utility of Land-
sat multi-temporal imageries to identify those characteris-
tics of a forest that make it susceptible to insect defolia-
tion, as well as to identify the actual insect defoliation but 
could not clearly differentiate defoliation where vegeta-
tion is highly saturated. Therefore, it may be difficult for 
Landsat images to detect defoliation in heavily populated 
mopane woodland due to the short window for monitoring 
and the coarse temporal resolution of Landsat relative to 
cloud cover. 

As an alternative, other remote sensing platforms have 
been demonstrated since the early-1990s to be effective 
for insect defoliation detection and mapping. Two of those 
are the Systeme Probatoire d'Observation de la Terre 
(SPOT) and National Oceanic and Atmospheric Adminis-
tration Advance Very High Resolution Radiometer 
(NOAA AVHRR) imageries (Fraser and Latifovic 2005; 
Kovacs et al. 2005). Clerke and Dull (1990) determined 
the extent and severity of gypsy moth defoliation in Vir-
ginia using imagery acquired by SPOT. SPOT data ac-
quired before and during defoliation was used to classify 
insect defoliation. Based on ground truth data and aerial 
photography, the range of ratio values corresponding to 
heavy, moderate, and light defoliation were defined. Clerke 
and Dull (1990), however, raised questions regarding the 
completeness of this classification, citing the unknown 
effects of terrain and forest type on the extent and severity 
of gypsy moth defoliation. 

Dull et al. (1990) used SPOT imagery, high altitude 
panoramic color infrared photography, and traditional 
aerial sketch-mapping results to determine the extent of 
gypsy moth defoliation in northern Virginia. This study 
illustrated the importance of maintaining a GIS database 
to track defoliation extents, spray block extents, phero-
mone trap data, and egg mass survey results. This data-
base could be used to efficiently determine the defoliated 
area of each county, the defoliated area of each property 
owner, and the defoliated area of each spray block. This 
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information could make the evaluation of treatment suc-
cess, as well as any treatment decisions, very simple. Joria 
and Ahearn (1991) used a digitized USGS map to deter-
mine the locations of forested areas in Michigan and con-
centrated the study on only those forested areas using both 
Landsat TM and SPOT imageries. Landsat TM was found 
to be better than SPOT for differentiating between the 
defoliation classes. 

Data from SPOT Vegetation (VGT) at 1 km resolution 
was used for mapping defoliation and mortality of coni-
ferous forests due to the eastern hemlock looper, with 
commission errors of 60% and omission errors of 33% res-
pectively, and with reduced errors when aggregating the 
data into larger mapping units (Fraser and Latifovic 2005). 
The authors also indicated the potential for near real-time 
monitoring, however with potentially greater errors. Fraser 
and Latifovic (2005) suggested the combination of SPOT 
VGT and NOAA AVHRR data for establishing a general 
system for large-scale (5–10 km2) forest change detection. 
While the general occurrence of defoliated areas can be 
identified, the classification of the intensity of defoliation 
has been less reliable using SPOT and NOAA AVHRR (de 
Beurs and Townsend 2008). 

Insect defoliation outbreaks have also been investigated 
using Moderate Resolution Imaging Spectroradiometer 
(MODIS) data (Kharuk et al. 2007). de Beurs and Town-
send (2008) conducted a thorough analysis of MODIS daily, 
8-day and 16-day composite data for detecting gypsy moth 
defoliation in oak forests. Their study demonstrated signifi-
cant relationships between defoliation and vegetation indi-
ces estimated at the plot scale. They concluded that MODIS 
data represent an important tool for insect damage detection 
at the regional scale. Furthermore, Cook et al. (2008) stu-
died the effect of insect defoliation on forest production 
efficiency and net carbon exchange using models driven 
with MODIS data. In contrast to other multi spectral remote 
sensing platforms, MODIS data have a lower spatial reso-
lution, and are therefore more appropriate for regional-scale 
analyses. In addition, MODIS data are available at a signi-
ficantly higher temporal resolution (daily) while preserving 
the spectral bands that are available in the Landsat data. 

However, a common problem in using MODIS data is 
that evaluation of coarse-resolution damage maps is dif-

ficult due to the general lack of spatially explicit reference 
data. Many of the cited studies have evaluated their clas-
sifications against sketch maps from aerial surveys or 
Landsat change maps. These are themselves estimates that 
may be limited in temporal and attribute accuracy. 

Relatively new Medium Resolution Imaging Spectro-
meter (MERIS) data according to Van der Sanden et al. 
(2006) proved to be better in detecting and monitoring 
insect defoliation than Landsat, MODIS and SPOT 
because of its ability to image large areas at medium spa-
tial resolution. MERIS data were concluded to generally 
depict areas of tent caterpillar defoliation in Canadian 
aspen forests (van der Sanden et al. 2006), however, no 
formal evaluation was made due to lack of accurate 
ground data. 

Recently, a new satellite platform known as World 
View-2 was launched. WorldView-2 is Digital Globe’s 
second next-generation satellite, built by Ball aerospace, 
and leveraging the most advanced technologies (Cheng 
and Chaapel 2008). Like WorldView-1, WorldView-2 is 
equipped with state of the art geolocational accuracy capa-
bilities and will be only the second commercial spacecraft 
after WorldView-1 equipped with control moment gyros, 
which enable increased agility, rapid targeting and effici-
ent in-track stereo collection (Cheng and Chaapel 2008). 
This advanced agility combined with an operating altitude 
of 770 km enables it to collect nearly 1 million km2 of 
high-resolution imagery per day, and offer average revisit 
times of 1.1 days around the globe. Currently, WorldView-
2 is the only commercial multispectral satellite to provide 
global, high-resolution access to the Red-Edge spectral 
band as part of its 8-band multispectral capabilities 
(Cheng and Chaapel 2008). This Red Edge band has been 
used to track stress-induced changes in plants, hence it is 
very important band to consider when detecting and moni-
toring the health of forest. Until now, the only satellite 
imagery available that contains Red-Edge data is MERIS 
with medium spatial resolution (300 m) (van der Sanden 
et al. 2006). MERIS can provide some insights into the 
conditions of an entire field, but is unable to provide the 
segmentation necessary to evaluate small scale details, 
like the health of individual trees in an orchard, hence the 
advantage of World View-2 with higher spatial resolution 

Table 1 Sample of multispectral remote sensing studies applied in defoliation. 
Sensor Study area Image data date Defoliators Comment Reference 
Landsat-1 Pennsylvania, 

USA 
1975 Gypsy moth Classification results were subjectively analysed and found to be 

representative of actual ground cover. However, errors of 
commission in which agricultural cover types were classified as 
heavy defoliation decreased classification performance. 

Williams 1975 

Landsat TM Wisconsin, 
USA 

1990-1995 Jack pine 
budworm 

Classification was successful with single-date imagery but was not 
tested with other methods such as change detection. 

Radeloff et al. 
1999 

MODIS 
EVI 

Siberia 2002 Silk moth Very effective in mapping large-scale conifer mortality and also 
for near real time monitoring but does not provide links with finer 
resolution validation data 

Kovacs et al. 2005

SPOT Virginia 1989 Gypsy moth Questions regarding the completeness of this classification, citing 
the unknown effects of terrain and forest type were raised. 

Clerke and Dull 
1990 

Landsat TM Canada July (1999, 2001) Aspen Good for identification but could not differentiate defoliation 
where vegetation is dense. 

Hall et al. 2003 

Landsat TM 
& SPOT 

Michigan, USA June 1988 Gypsy moth Both can classify defoliation only on a large scale Joria et al. 1991 

MODIS Norway 2000-2002, 2005 Scots pine Good for regional scale analyses but still coarse for effective 
defoliation monitoring 

Eklundh et al. 
2009 

SPOT VGT Canada 1998-2000 Hemlock 
looper 

Good for near real-time and identifying occurrence of defoliation 
but less reliable for classifying intensity of defoliation 

Fraser and 
Latifovic 2005 

Landsat TM Australia March 2008 Beetles and 
sawfly 

Improved accuracy when advance analytical techniques was 
applied but still coarse for small scale monitoring 

Somers et al. 2010

SPOT HRV USA August 1991 Spruce 
budworm 

Can classify effectively but cannot monitor defoliation in real time Franklin and Raske 
1994 

MERIS Canada 2003-2005 Aspen Better than Landsat, SPOT, MODIS but unable to evaluate small 
scale details 

van der Sanden et 
al. 2006 

MODIS USA 2000-2001 Gypsy moth Demonstrated significant relationships between defoliation and 
vegetation indices estimated at the plot scale. 

Beurs and 
Townsend 2008 
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(1.84 m) (Cheng and Chaapel 2008). 
Although images from SPOT, MODIS and MERIS 

proved a better alternative to Landsat in terms of the spa-
tial, temporal and spectral resolution, they are also limited 
in that they do not contain specific windows such as red–
edge (except for MERIS but still has low spatial resolu-
tion) which is a very important band in studying defoli-
ation (Pu et al. 2003). Moreover, most of the researches on 
insect defoliation using multispectral images have been 
carried out in coniferous forest. Therefore, there is need to 
test the effectiveness of these multispectral sensors for 
monitoring insect defoliation in broadleaved forests. 

 
Hyperspectral remote sensing 
 
Further advances in satellite remote sensing and imaging 
spectrometry have given rise to hyperspectral imagery, 
which has been demonstrated to be a reliable and relatively 
accessible technology to study forests damaged by insects 
(Coops et al. 2004; Stone and Coops 2004; Mutanga et al. 
2009). Hyperspectral sensors also known as imaging spec-
trometers are instruments specifically made to acquire data 
at high spectral and moderate spatial resolution thereby 
allowing reflectance, radiance and emittance spectra to be 
constructed in such a way that it permits physical measure-
ments of the Earth’s surface. Unlike multispectral imagery, 
a hyperspectral image provides hundreds of contiguous 
bands across the visible (VIS), near-infrared (NIR) and 
shortwave infrared (SWIR) regions of the electromagnetic 
spectrum, offering unprecedented detailed spectral reflec-
tance data from land surface features. Since major leaf com-
ponents (e.g. pigments, water, carbon, nitrogen) produce 
distinctive reflectance signals at specific wavelengths of the 
aforementioned regions, hyperspectral imagery allows for 
the measurement of biochemical and biophysical attributes 
of the plant, associated with its structure, physiology and 
phenology, and therefore with its health status (Asner 1998; 
Treitz and Howarth 1999; Lucas et al. 2004; Mutanga and 
Skidmore 2004; Mutanga et al. 2004; Cho and Skidmore 
2006). 

There is mounting evidence that hyperspectral instru-
ments have the capability, not only to assess defoliation, but 
also to identify the early signs of defoliation; in some cases 
before visual symptoms are apparent (Mohammed et al. 
1995; Ismail et al. 2007, 2008). This can be explained by 
the tendency of defoliated leaves to undergo reduction in 
photosynthetic activity and to lose chlorophyll. These chan-
ges alter reflectance at chlorophyll-sensitive wavelengths 
(Vogelmann et al. 1993). Researches on defoliation conduc-
ted using hyperspectral sensors are not limited in the litera-
ture (Table 2). Although broad-band sensors detect defoli-
ated and non-defoliated plants, hyperspectral imagers, have 
the spectral detail to potentially distinguish between soil, 
dead, and senescent trees. Hyperspectral data are demons-
trated to discriminate plant physiological condition (Pontius 
et al. 2005), even at early phases of senescence (Campbell 
et al. 2004). 

Some previous studies have used hyperspectral remote 
sensing to detect plant defoliation due to water deficit 
(Stimson et al. 2005), insect damage (Radeloff et al. 1999), 
pest outbreaks (Wolter et al. 2008), and pollution (Camp-
bell et al. 2004). For instance, Pontius et al. (2005) used 
AISA Eagle sensor to map hemlock decline in USA. They 
found out that unlike multispectral sensors, hyperspectral 
sensors were able to classify defoliation in a given forest to 
11-class rating system with 88% accuracy making it pos-

sible for land managers to assess and monitor detailed 
changes in forest health. Others such as Somers et al. 
(2010) used Hyperion sensor to monitor forage defoliation 
in southern Australia and observed a good relationship 
with ground measurement. Additionally, the high spatial 
resolution data from hyperspectral sensors gives the abil-
ity to detect tree-level (rather than stand level) characteris-
tics, which reduce confusion caused by mixed pixels (e.g. 
crown shading, soil, non-tree vegetation, etc.) (Greenberg 
et al. 2006). While some of these studies reveal substantial 
improvement over multispectral sensors, others believe 
that for accurate detection and monitoring, there will be 
need for the combination of both sensors. 

However, just like multispectral sensors, only a few 
studies have used hyperspectral sensors to monitor defoli-
ation in broadleaved forests (Coops et al. 2003; Santos et 
al. 2010). To the best of our knowledge, no studies have 
been carried out to map and monitor mopane woodland 
defoliation using hyperspectral scanners. Hyperspectral 
sensors could actually provide more information of insect 
defoliation in broadleaved forest because of the presence 
of high spatial and different bands to which defoliation 
can be monitored. Therefore, further research need to be 
conducted on the use of Hyperspectral remote sensors for 
effective management of insect defoliation in broadleaved 
forests such as mopane woodland. 

 
Trade-offs between sensor resolutions for 
monitoring insect defoliation 
 
We have shown that remote sensing is effective for map-
ping insect defoliation. However, three issues appear fun-
damental to the successful use of remote sensing to assess 
and monitor insect defoliation: the spectral, spatial charac-
terization of defoliation and the timing of image acquisi-
tion. 

First, a remote sensing spectral basis for damage class 
limits (e.g., light, moderate, and severe) is required to 
achieve consistent detection and mapping of defoliation 
severity. Field and aerial surveys tend to rate areas defoli-
ated into categories that remote sensing studies have 
attempted to emulate. Broad damage class limits are not 
conducive for consistent defoliation mapping because they 
may not correspond to differences in spectral response 
values that are spectrally or statistically separable on the 
image. The two factors that drive the spectral response of 
a sensor include its radiometric resolution and the range of 
sensitivity to the electromagnetic spectrum. Defoliation 
tends to result in either physical loss of leaf area or leaf 
color change, which results in physical differences in 
spectral response when compared to pre-defoliation ima-
ges. Several consecutive years of defoliation, however, 
tend to result in physiological weakening, top kill, and 
mortality for some defoliators. Understanding the role 
these factors may play in the resulting spectral responses 
recorded in the image is important to successful use of 
remote sensing for mapping defoliation. Thus, remote sen-
sing observations from airborne or satellite sensors that 
can be used for monitoring defoliation must be over a 
more continuous scale of spectral responses that can pot-
entially capture a finer scale of defoliation levels rather 
than the broad classes that are typically used (Franklin 
2001; Hall et al. 2003) hence the recent use of hyper-
spectral sensors. 

In addition to the spectral observations of defoliation, 
the size of the outbreak area must also be large enough to 

Table 2 Sample of hyperspectral remote sensing studies applied in defoliation. 
Sensor Study area Defoliators Comment Reference 
AISA EAGLE USA Hemlock looper Good for identifying defoliation at tree level using biophysical 

indicators such as chlorophyll content 
Pontious et al.2005 

HYPERION Australia Beetles and sawfly Good results with ground measurement Somers et al. 2010 
HYPERION Chile Aphid Able to detect defoliation also at tree level Peña and Altmann 2009 
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be detectable with the airborne or satellite sensor employed. 
The spatial resolution of the sensor and the areal coverage 
of an image are also important considerations in the selec-
tion of the appropriate sensor. As a result, with both sensor 
spectral and spatial resolution considerations, the remote 
sensing of a defoliation problem is more complex than a 
simple change in foliage condition. 

Thirdly, the timing of image data acquisition should 
coincide with the period when spectral changes resulting 
from defoliation are most observable; for timing of data 
acquisition is notably one of the most difficult to achieve 
with satellite remote sensing because of the need for cloud-
free conditions during the suitable range of dates for image 
acquisition. Most remote sensing studies tend to rely on 
pre- and post-outbreak images to detect spectral response 
differences resulting from insect defoliation. The opportuni-
ties to acquire imagery ranging from high (e.g., submeter 
pixel size) to low spatial resolution (e.g., 1-km pixel size) 
are obviously increasing at an unprecedented rate that 
should help ensure that future image data will be available 
during the narrow time periods necessary to capture damage 
from insect defoliation. 

This section has outlined the remote sensing data used 
in monitoring defoliation from inception highlighting the 
strengths and weaknesses and its implications in mapping 
and detecting defoliation within mopane woodland. Logical 
questions that follow include: What has been the primary 
methods used in defoliation surveys and which remote sen-
sing methods have been employed in mapping defoliation 
and to what extent have they been successful? 

 
DEVELOPMENTS IN REMOTE SENSING 
TECHNIQUES FOR ASSESSING INSECT 
DEFOLIATION 
 
A number of studies have demonstrated the potential of 
measuring defoliation from remotely sensed observations 
using different techniques (Coops et al. 2004; Stone and 
Coops 2004). The studies use map sketching and linear reg-
ression modeling between field assessments of vegetation 
characteristics related to biophysical variable indicators of 
defoliation such as LAI and Chl content. They also relate 
the field measurements with vegetation indices calculated 
from the images to detect and monitor defoliation from a 
range of damaging agents including fungal infections and 
insect predation. Therefore, we discuss the different analy-
tical approaches that have been used for detecting, mapping 
and monitoring insect defoliation and their implications in 
mopane defoliations monitoring. 

 
Vegetation indices 
 
Most of the vegetation indices developed to detect defolia-
tion in woodlands are based on Chl and water content. 
Vegetation indices can be used to measure changes in leaf 
area resulting from defoliation (Nelson 1983). Previous 

studies have used vegetation indices or other measures to 
examine canopy defoliation by a variety of insects. Nelson 
(1983) calculated the difference between vegetation indi-
ces on two Landsat dates using simple ratio indices such 
as red-green ratio index, and then empirically determined 
a threshold to separate defoliated from non-defoliated 
pixels. This technique was found to be superior to com-
peting techniques for the most accurate assessment of 
defoliated areas. It has been reported that plants under 
defoliation display a decrease in canopy reflectance in the 
lower portion of the near infrared, a reduced absorption in 
the Chl active region, and subsequently a shift in the red 
edge (Carter and Knapp 2001). 

One simple vegetation index that has also been used in 
the past is the Normalized Difference Vegetation Index 
(NDVI) (Rouse et al. 1973). As defoliation occurs and leaf 
area decreases, the NDVI value will also decrease. It has 
recently been shown that the Wide Dynamic Range Vege-
tation Index (WDRVI) performs better than the NDVI in 
estimating defoliation in high-density vegetation (Gitelson 
et al. 2002; Gitelson et al. 2006). While the NDVI 
becomes saturated with high densities of photosynthetic 
green biomass and the relationship between NDVI and 
LAI is non-linear (Mutanga and Skidmore 2004), the 
WDRVI increases the sensitivity of the NDVI, and hence 
makes the WDRVI - LAI relationship linear. More com-
plex vegetation indices correct for variations in soil back-
ground and for atmospheric scattering. The Enhanced 
Vegetation Index (EVI) (Huete et al. 2002) is the standard 
vegetation index for MODIS. EVI will decrease in res-
ponse to defoliation (Huete et al. 2002). 

However, due to errors (saturation in areas with sig-
nificant forest cover) encountered when using these indi-
ces, scientist have developed better indices which includes 
the short wave infrared band (SWIR). Water strongly 
absorbs radiation in SWIR portion of electromagnetic 
spectrum making SWIR reflectance to be very sensitive to 
the amount of water in vegetation. SWIR reflectance is 
generally low for high leaf water content and increases 
with decrease in water content. The sensitivity of the 
SWIR has led to the development of a number of vege-
tation indices that are responsive to vegetation defoliation 
based on SWIR and NIR reflectance. 

Normalized Differential Water Index (NDWI) and 
Normalized Differential Infrared Index (Gao 1996) were 
developed from hyperspectral data as the difference 
between NIR reflectance and a SWIR band and were 
found to be good detectors of defoliation. In most cases 
however, most of these indices have been modified to 
meet the need of researches into insect defoliation in 
modern times. All of these indices have been used in map-
ping and detecting defoliation of different insect defoliator 
with varying outcomes (Pu et al. 2003; Coops et al. 2004). 
While some have reported success, some of the indices 
have failed to efficiently discriminate defoliated areas 
from other spectrally active end members within particular 

Table 3 Summaries of indices proposed for mapping and monitoring defoliation. 
Formula Category Notation 

MODIS World View-2 Hyperion 
Description References 

Multiple ratio NDVI (B3-B2)/(B3+B2) (NIR1-
Red)/(NIR1+Red)

(R750-R705)/(R750+R705) Chlorophyll content and LAI Giltelson and Merzlyak 
1994 

 mNDVI (NIR1-
Red)/(NIR1+2CB) 

 (R750-R705)/(R750+R705) Chlorophyll content Sims and Gamon 2002 

Red edge VRE  NIR1/Red Edge (R740/R720) Chlorophyll absorption Vogelman et al. 1993 
 CUR   R675-R690)/R683

2 Chlorophyll content Zarco-Tejada et al. 2000
 REIP   700 +40 ((R667+ R782)/2) 

-R702)/R738-R702 
LAI Guyot and Baret 1988 

Pigment C PRI  (Green-Yellow)/ 
(Green+Yellow) 

(R531-R570)/(R531+R570) Xantophyll pigment Gamon et al.1992 

 CRI   (R510)-1-(R700)-1 Chlorophyll absorption Gitelson et al.2002 
Simple ratio RDRI  (RG+Y)/(Rred) (R500-599)/(R600-699) Chlorophyll content and LAI Peñuelas et al. 1995 

 RNI  Red/ NIR1  Chlorophyll content and LAI Zhang et al. 2009 
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wood-lands. A common problem in dense vegetation stands 
is the high degree of light absorption making vegetation 
indices insensitive to biomass changes. Knowing fully the 
limita-tion of vegetation indices, scientists have developed 
and improved techniques that can accurately estimate bio-
mass in more densely vegetated areas using hyperspectral 
derived vegetation indices rather than focusing on the red 
and NIR bands alone (Mutanga and Skidmore 2004). For 
detecting and mapping defoliation in mopane, we suggest 
the use of three categories of vegetation indices which are 
described below and presented in Table 3. 

 
1. Multiple ratio indices 
 
Multiple ratio indices such as Normalized Differential Vege-
tation Index (NDVI), modified normalized difference vege-
tation index (mNDVI) have been found to be good detectors 
of defoliation (Sims and Gamon 2002). While, NDVI is a 
vegetation index derived from the ratio of red and NIR 
bands and has been found to be highly correlated with bio-
physical indicators that depicts defoliation (LAI and Chl 
content) (Dye and Tucker 2003; Zhou et al. 2003), mNDVI 
modifies NDVI by including the reflectance at high 445 nm 
(at which Chl absorption produce minimal reflectance) 
(Sims and Gamon 2002). The mNDVI compensates for high 
leaf surface scattering that NDVI does not account for (Peña 
and Altmann 2009). It is our opinion that mopane worm de-
foliation of mopane woodland is expected to yield a de-
crease in NDVI, mNDVI during the defoliated stage when 
the leaves are almost absent. The limitation of these indices 
in the context of detecting and mapping defoliation of mo-
pane woodland will be their sensitivity to optical properties 
of reflecting soil background since for a given amount of 
vegetation, soil substrates results in higher vegetation index 
values which may not necessarily mean lack of defoliation 
(Sims and Gamon 2002). To minimize the effect of soil 
background, other vegetation indices have been pro-posed. 

 
2. Simple ratio indices 
 
Simple ratio indices were developed to reduce or eliminate 
soil influence on solar reflectance values when monitoring 
forest health (Huete et al. 2002; Peñuelas et al. 1995). The 
simple ratio indices measured with sufficient precision is 
quite sensitive to vegetation changes during the time of 
peak growth. However, an inherent drawback of these indi-
ces is the loss of uniqueness in information due to the fact 
that different leaves can have different spectral responses, 
but have band ratio values that are similar. The introduction 
of multiple ratios such as NDVI has covered the limitations 
of simple ratio although they both saturate when LAI is 
very high. For monitoring mopane defoliation, two simple 
ratios have been suggested, the Red Green Ratio Index 
(RGRI) and Red NIR Index (RNI). The two indices have 
been found to accurately determine the defoliation level of 
forest to a certain level since they include the combination 
of bands where healthy and unhealthy vegetation can be 
easily differentiated (Peñuelas et al. 1995). They also elimi-
nate topographic (irradiance) and atmospheric effects (Peñu-
elas et al. 1995). For mopane defoliation, the ratio is ex-
pected to be high when the woodland is photosynthetically 
active i.e., the healthy stage and vice versa. 

 
3. Red edge indices 
 
Recently, new vegetation indices based on red-edge region 
have been used to track insect defoliation (van der Sanden 
et al. 2006). Red-edge is defined as the rise of reflectance at 
the boundary between the chlorophyll absorption feature in 
VIS red wavelengths and leaf internal structure scattering in 
NIR wavelengths. The position of the red edge is consistent 
among different species and generally ranges from 680 to 
780 nm (Cho and Skidmore 2006). Red edge indices are 
constructed with bands sensitive to the Chl content and 
internal structure of the leaf, and therefore have proven to 

be closely related to foliage biomass quantity, growth and 
developmental stage and health status of the plant (Gitel-
son and Merzlyak 1994; Sims and Gamon 2002). Zarco-
Tejada et al. (2000) describe Chl content as a potential 
indicator of defoliation process because of its direct role in 
the photosynthetic processes of light harvesting and initi-
ation of electron transport and its responsiveness to a 
range of changes in plant health status at any particular 
time. 

Red edge indices such as Curvature index, Vogelman 
index and the red edge inflection points have been used to 
relate biophysical indicators that are used to measure the 
health status of woodland (Zarco-Tejada et al. 2000). 
Vogelman red edge index was discovered to be associated 
with leaf area and chlorophyll content while curvature 
index was used to track changes in Chl content and it was 
found to be strongly correlated with Chl index (Zarco-
Tejada et al. 2000). The red edge inflection point (REIP) 
has also been found to correlate significantly with LAI 
and hence could be used for monitoring the health status 
of woodland (Hermann et al. 2010). 

In monitoring mopane worm defoliation of mopane 
woodland therefore, it is expected that the changes in the 
values of the red edge indices mentioned above will indi-
cate the changes in the health status of the canopy at the 
different stages of defoliation. For instance, decrease in 
the values of the red edge indices is expected during the 
defoliated stage when the leaves are almost absent. 

 
4. Pigment content indices 
 
When the rate of photosynthesis decreases due to plant 
stress, the foliage exhibits higher concentrations of carote-
noid relative to chlorophyll pigments, while higher foliar 
investments of xanthophyll cycle pigments result as a res-
ponse to low light use efficiency. Vegetation indices based 
on bands sensitive to these leaf pigments have also been 
demonstrated to be closely correlated with vegetative 
growth stage and the degree of stress of vegetation (Gamon 
and Surfus 1999; Gitelson et al. 2002; Sims and Gamon 
2002). In stressed plants, the proportionally stronger dec-
line of green pigments (i.e. Chls) can be used to detect 
defoliation. The two major pigment indices that have been 
found to be an indicator of plant stress are photochemical 
reflectance index (PRI) and Carotenoid Reflectance Index 
(CRI) (Gitelson et al. 2002). The PRI and CRI were deve-
loped as a remotely-sensed indicator of Light Use Effici-
ency (LUE) (Gamon et al. 1992). They use narrow spec-
tral bands to detect changes in leaf reflectance at 531 nm 
relative to a reference band that is usually located at 
around 570 nm and is not affected by changes in short-
term stress events. 

Carotenoid pigments have multiple functions, but they 
are generally found in higher concentrations in plant 
leaves that are either stressed or dead. PRI and CRI have 
been correlated with plant stress in several field studies at 
the leaf and ecosystem levels (Peñuelas et al. 1995). They 
provide a quick and non-destructive assessment of leaf 
physiological properties (Peñuelas et al. 1995) and may be 
used for wide range of species (Gamon et al. 1992). The 
limitation of these indices for defoliation mapping occurs 
when they are related to plant water status (Peñuelas et al. 
1995) especially during wilting of leaves in dry periods. It 
must be noted that PRI is sensitive to soil background 
reflectance (Peñuelas et al. 1995). However, they may be 
integrated with other vegetation indices that exploit bio-
physical variables to provide strategic remote sensing 
monitoring of defoliation. In mapping defoliation within 
mopane woodland, it is believed that defoliation will 
result in low green pigments hence low values of PRI and 
CRI based on leaf pigments during the peak of defoli-
ation since photosynthesis activities is low or even non-
existent. Narrow-band spectral reflectance may also pro-
vide information on the ratio of carotenoid to Chl for 
detec-ting stress effects. 
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Change detection 
 
Other studies have approached defoliation in terms of 
change detection methods (Collins and Woodcock 1996). 
Relative robust change detection methods include image 
differencing and ratio differencing. Image differencing is 
probably the most widely applied change detection algo-
rithm for a variety of geographical environments (Coppin et 
al. 2004). It involves subtracting one date of imagery from 
a second date that has been precisely registered to the first. 
With "perfect" data, this would result in a data set in which 
positive and negative values represent areas of change and 
zero values represent no change. Nelson (1983) delineated 
forest canopy changes due to Gypsy Moth defoliation in 
Pennsylvania more accurately with vegetation index dif-
ferencing than with any other single band difference or band 
rationing. Image ratio differencing on the other hand is one 
of the simplest and quickest change detection methods in 
insect defoliation monitoring where data are rationalized on 
a pixel-by-pixel basis. A pixel that has not changed will 
yield a ratio value of one. Areas of change will have values 
either higher or lower than one. The major drawback for 
these two change detection algorithms is that they do not 
adequately address differences in sun elevation angles or 
phenological changes between images recorded at different 
dates (Radeloff et al. 1999). In fact, Riordan (1981) criti-
cized the ratio change detection algorithm in combination 
with an empirical threshold definition as being statistically 
invalid. 

More sophisticated change detection methods perform 
transformation of the image space such as Gramm-Schmidt 
transformation, data reduction techniques such as principal 
component analysis and Tasseled Cap transformation. 

Image transformation techniques are frequently applied 
to multidate imagery that has been stacked in 2n-dimen-
sional space (where n is the number of input bands per 
image): principal component analysis (PCA) and tasseled 
cap (Radeloff et al. 1999). Using multi-date Landsat TM 
data, Collins and Woodcock (1996) compared Kauth-Tho-
mas and Principal Components transforms with Gramm 
Schmidt orthogonalization for mapping pest-induced forest 
mortality in the Lake Tahoe Basin, concluding that the KT 
transform was most sensitive to changes in vegetation con-
dition. Muchoney and Haack (1994) also examined merged 
principal components analysis, image differencing, spectral-
temporal change classification, and post classification dif-
ferencing for detecting forest defoliation. Their results indi-
cated that of the entire algorithm employed, defoliation was 
best determined by image differencing and principal com-
ponents analysis. The exact nature of the principal com-
ponents derived from multi-temporal data sets is difficult to 
ascertain without a thorough examination of the structure of 
the data and a visual inspection of the combined images. To 
avoid drawing faulty conclusions, the analysis should not be 
applied as a change detection method without a thorough 
understanding of the study area (Diago et al. 2010). More-
over, the vegetation indices and most of the transformation 
methods used for monitoring defoliation are limited how-
ever by their dependence on the visibility of leaves in image 
pixels since for defoliation, it is the absence of leaves that 
determines the severity of the stress (Stone and Coops 
2004). 

By using combined registered data sets, or correspon-
ding subsets of bands, collected under similar conditions, 
researchers have come up with another algorithm for moni-
toring change detection in forest health known as composite 
analysis (Coppin et al. 2004). They came up with classes 
where forest canopy change would be expected to have 
statistics significantly different from those where no change 
has occurred, and could be identified as such. The method 
can incorporate multistage decision logic and is sometimes 
referred to as "layered spectral / temporal change clas-
sification", "multidate clustering", or "spectral change pat-
tern analysis". While this technique necessitates only a 
single classification, it is a very complex one, in part 

because of the added dimensionality of two dates of data. 
In numerous cases it requires many classes and many 

often redundant features when no discriminant analysis 
has preceded the process. It furthermore demands prior 
knowledge of the logical interrelationships of the classes 
and should only be used when the researcher is intimately 
familiar with the study area (Coppin et al. 2004). Burns 
and Joyce (1981) found the method to produce only 
change in forest cover per se without providing accurate 
information on the character of the change. Coppin et al. 
(2004) remarked that, since spectral and temporal features 
have equal status in the combined data set, they cannot be 
easily separated in the pattern recognition process. As a 
consequence, class labeling using this algorithm may be 
difficult. 

A mathematical model that best describes the fit 
between two multidate images of the same area can be 
developed through stepwise regression and also use to 
detect defoliation in forest. The algorithm assumes that a 
pixel at time is linearly related to the same pixel at a later 
time in all bands of the electromagnetic spectrum acquired 
by the sensor. This implies that the spectral properties of a 
large majority of the pixels have not changed significantly 
during the time interval (Coppin et al. 2004). The dimen-
sion of the residuals is an indicator of where change oc-
curred. The regression technique accounts for differences 
in mean and variance between pixel values for different 
dates. Simultaneously, the adverse effects from divergen-
ces in atmospheric conditions and/or sun angles are 
reduced. The critical part of the method is the definition of 
threshold values or limiting dimensions for the no-change 
pixel residuals. Singh (1989), on the other hand, reported 
the highest change detection accuracy for tropical forest 
change detection with the regression method. 

Change Vector Analysis (CVA) is another multivariate 
statistical analysis that has been used extensively to iden-
tify changes in forest as a result of insect defoliation 
between image dates and is widely discussed in the remote 
sensing literature (Collins and Woodcock 1996; Townsend 
et al. 2004). Generally, users rely upon two outputs of 
CVA to represent the magnitude of change, computed as 
the absolute geometric difference in the soil brightness (B), 
vegetation greenness (G), and surface wetness (W, col-
lectively BGW), between dates, and an eight-level clas-
sification representing all possible directions of change 
bounded by BGW all increasing between dates and BGW 
all decreasing between dates (Allen and Kupfer 2000). As 
noted in numerous studies (Cohen and Fiorella 1998; 
Allen and Kupfer 2000; Townsend et al. 2004), the limita-
tion to this approach for mapping defoliation is that it 
requires the user to identify a threshold level in magnitude 
change that represents actual change between dates rather 
than changes within a date. This becomes very difficult to 
use when defoliation is rapid and can only be applied with 
imageries of high temporal resolution. 

Radeloff et al. (1999) developed an approach for 
monitoring defoliation in terms of the relative proportion 
of leaves in image pixels using linear spectral mixture 
analysis (SMA) which can quantify the proportion of each 
pixel that is occupied by individual image component 
(Sims et al. 2007). These methods have previously been 
used to measure defoliation in Pinus radiata plantations 
using high-resolution multi-spectral images but methods 
for calculating image fractions from hyperspectral image 
data are in their developmental infancy. The application of 
SMA for the assessment of defoliation offers several ad-
vantages over simple regression methods using spectral 
indices and other transformation methods in that it is capa-
ble of detecting vegetation cover at low and fragmented 
levels, and has the ability to reference a small number of 
spectrally stable endmembers (vegetation, soil, water, etc.) 
(Goodwin et al. 2005). The technique decomposes the 
reflectance of each pixel into the relative contribution of a 
limited number of surface endmembers making it easy to 
separate image components (Somers et al. 2010). SMA 
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methods have been used to monitor insect defoliation in 
broadleaved forest (Goodwin et al. 2005; Somers et al. 
2010). However and to date, the full potential of SMA for 
forest defoliation assessment has not yet been achieved. 
Residual error in fraction estimates provided by SMA is 
often introduced by the natural variability in the conditions 
of scene components, i.e., soil, plant, etc. inherent in remote 
sensing data. Recently, a number of solutions have been 
developed to reduce this effect (Asner 1998). Somers et al. 
(2010) found out that the SMA techniques gave improved 
accuracy in monitoring defoliation. 

 
POTENTIAL OF MAPPING MOPANE DEFOLIATION 
USING REMOTE SENSING 
 
The current method used to spatially map the mopane worm 
defoliation of mopane woodland is by field-based exercises. 
The effectiveness of this method is questionable because the 
method is qualitative, subjective, and dependent on the skill 
of the surveyor (Stone and Coops 2004). However, the abil-
ity of remote sensing to successfully detect and map forest 
health has been given great attention with diverse range of 
imageries and modeling techniques (Radeloff et al. 1999; 
Stone and Coops 2004; Pontius et al. 2005). Thus remote 
sensing has the potential to ensure that the detection, map-
ping and monitoring of mopane worm defoliation is a pos-
sible task provided a sound understanding of the progres-
sion and patterns of defoliation are known. Knowledge of 
these defoliation processes allows for the development of 
algorithms to detect changes in foliar characteristics using 
remotely sensed data. Digital remote sensing technologies 
measure the amount of electromagnetic energy reflected 
from the leaves and canopy of the tree using a number of 
wavelengths which can range from 350 to 2500 nm. Resear-
chers have used this spectral information, in the form of 
individual bands, band combinations, and vegetation indi-
ces to detect and map forest health (Coops et al. 2004; Pon-
tius et al. 2005). 

Additionally, remote sensing technology can image 
large areas and allow for the repetitive monitoring and 
assessment of tree damage and mortality (van der Sanden et 
al. 2006). 

A combination of both multispectral and hyperspectral 
imageries will give more insight for detecting and moni-
toring the defoliation process within mopane woodland in 
order to determine the best spatial and spectral resolution to 
which it can be monitored. In mapping and monitoring 
mopane defoliation using satellite remote sensing platforms 
therefore, spatial, spectral and temporal resolution must be 
of great importance. We therefore suggest the use of SPOT, 
World View-2 and Hyperion imageries for monitoring the 
defoliation process. The primary strengths of Word View-2 
are its high temporal resolution (1.1 days), the presence of 
windows (red edge) for monitoring defoliation, its ability to 
image large areas at a relative high spatial resolution (1.84 
m). Also, SPOT and Hyperion images are suggested not 
only due to their relatively high resolutions (spatial, spectral 
and temporal) with respect to other multispectral and hyper-
spectral images respectively, but also for their easy acces-
sibility. The view of these authors is that with the relatively 
high resolution images of World View-2 and Hyperion and 
relatively coarse SPOT images, we can not only be able to 
map but also determine the extent to which spatial, spectral 
and temporal resolution of satellite imageries play in the 
detection and monitoring of defoliation from mopane wood-
land at different stages i.e. undefoliated, early defoliated 
and late defoliated stages. 

Given the success and limitations of the different tech-
niques used in monitoring insect defoliation discussed 
above, we recommend the combination of different tech-
niques with the aim of determining the best approach to 
mapping and monitoring defoliation within mopane wood-
land. For instance the use of vegetation indices will pro-
vide the spatio-temporal patterns of mopane defoliation 
while more sophisticated image classification techniques 

such as SMA and CVA which have been previously asso-
ciated with biophysical indicators that are related to defo-
liation (Rade-loff et al. 1999; Somers et al. 2010) will 
reduce the limitations encountered with the use of vegeta-
tion indices. 

 
CHALLENGES OF REMOTE SENSING IN 
MAPPING MOPANE DEFOLIATION 
 
Despite all the efforts of applying remote sensing, insect 
defoliation monitoring has been only moderately success-
ful. Reliable insect defoliation monitoring has often been 
limited to three classes (e.g., heavy, medium, and light) 
with accuracies around 70–80%. Low defoliation levels 
remain difficult to detect. Consequently, the challenge 
would be to assess the different characteristics and defoli-
ation process within mopane woodland, and then associate 
each level of observation with different remote sensing 
data types in order to provide the appropriate level of 
detail and accuracy for detection and mapping purposes. 

Three challenges may make it difficult to monitor 
mopane defoliation with remote sensing. First, mopane 
worm-mopane tree interactions are dynamic and periods 
where defoliation can be detected are often short. For 
instance, mopane worm defoliation of mopane woodland 
are bivoltine across most of its distribution with the first 
defoliation in November to December and the second in 
February to March, except in more arid areas where it is 
univoltine. This restricts the time period when defoliation 
can be detected to about 2 months. However, during the 
early stages of defoliation (when the worms are feeding on 
the tree), the canopy of the tree appears green and visually 
indistinguishable from healthy trees (Ciesla 2003). Leaves 
become pale green gradually leading to total defoliation. 
At this stage, discriminating the defoliated part of the tree 
using remote sensing is dependent on detecting the little 
changes that might have occurred in the spectral reflec-
tance of the tree. The subtle changes in the reflectance of 
defoliated vegetation, when measured by various broad 
band sensors, are often masked by the high degree of 
variation in reflectance caused by factors such as varying 
view geometry, illumination, and canopy density (Lucas et 
al. 2004). Moreover, because mopane worm is a wasteful 
feeder, its feeds on the entire leaflets of mopane tree 
giving the trees their characteristic red brown color (Ditl-
hogo et al. 1996). 

Given these challenges, there is strong possibilities of 
using high spectral resolution data (hyperspectral) for 
effective detection, mapping and monitoring early stages 
of mopane defoliation because the data allow for the 
detection of detailed features using many narrow bands 
which would have been otherwise masked by broad band 
sensors (Kumar et al. 2001; Mutanga et al. 2004, 2009). 

The second challenge is the presence of other end 
members in mopane woodland. Most mopane woodland 
contain an understorey of grasses and herbs that are always 
present during the mopane worm defoliation making it 
very difficult to distinguish defoliation of mopane from 
reflectance of other end members (mostly grasses and 
herbs) (Vogelmann et al. 1993). Infact, reflectance of 
heavily defoliated mopane tree may be mistaken for the 
end members. To resolve this, two things are suggested. 
Firstly, it will be important to use spectrometer to charac-
terize the reflectance of end members in other to distin-
guish them from actual defoliation (Somers et al. 2010). 
This can then be applied to satellite images. Secondly, 
high resolution imageries such as hyperspectral sensors 
will be accurate for detection and mapping purpose at 
canopy level and able to distinguish different understoreys 
using advance image transformation techniques such as 
SMA (Radeloff et al. 1999). 

The third challenge may occur when an image at the 
peak of an outbreak is being analyzed; it is unclear if an 
effect (changes in chlorosis, nutrient content or tree vita-
lity) or a determining factor (e.g., stand age) of the insect 
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population drives the satellite image classification (Somers 
et al. 2010). Effects and determining factors can both lead 
to reasonable classification accuracy peak-outbreak satel-
lite imageries are analyzed. Effects and determining factors 
may not be important for a forest manager mainly interested 
in a quick assessment of insect outbreak. However, sepa-
rating the two and being able to identify actual defoliation 
is crucial for a scientist who may want to study the relation-
ship between stand age and defoliation. To achieve this, 
there may be need to relate the effects with the determining 
factors. For example, the fraction (proportion of each end 
member) images from image transformation techniques 
such as SMA can be correlated with population measure-
ments of mopane worms at sampling location to detect if 
there are any relationships with effects and determining fac-
tor of mopane defoliation. 

 
SYNTHESIS AND RECOMMENDATIONS FOR 
REMOTE SENSING OF MOPANE DEFOLIATION 
 
Remote sensing is an integral and essential tool for the col-
lection of data needed to support decisions and action prog-
rams to improve forest health (Zhou et al. 2010). While not 
all attempts to use remote sensing in forest health protection 
have proven successful, many have been shown to meet 
data requirements, and have proven to be cost-effective 
alternatives to ground data acquisition. At the present time, 
there are two classes of remote sensing tools that have been 
shown to be effective in meeting forest health protection 
data requirements: aerial sketch mapping and imagery 
(satellite and airborne). Each have their individual strengths 
and weaknesses, and all should be considered a collective 
set of tools available to the forest health specialist. 

The capabilities of the various sensor systems presently 
available to the forest health protection specialist are a key 
factor in the type of sensor selected for a specific applica-
tion. Aerial sketch mapping, for example, is an excellent 
tool for background mapping, but subjective and their relia-
bility is difficult to assess hence not suitable for the assess-
ments of forest health. Today’s Earth-orbiting satellites and 
airborne sensors offer the advantage of image acquisition at 
regular intervals provided that the targets of interest are not 
under cloud cover. They also provide a range of spectral 
sensitivity across the electromagnetic spectrum. Initial 
satellite sensors have a poor spatial resolution, however, 
when compared to airborne sensors. This limits their ability 
to resolve all but the most severe of forest damage signa-
tures. However, remote sensing is a dynamic technology. 
New and improved methods of data collection, with supe-
rior resolution, are continuously becoming available. For 
instance, high spatial resolution remote sensing for forestry 
applications has reached an almost mature phase with wide 
range of applications. Numerous opportunities and chal-
lenges such as the robustness of remote sensing data pro-
cessing and analytical methods remain. 

With increasing availability of high resolution remote 
sensing data like hyperspectral scanners and Digital Multi-
spectral Image (DMSI) in Southern African sub-region 
which offers a potential source for the effective collection 
of spatially accurate, consistent, and timely imagery, it is 
essential to study the impacts of Imbrasia belina on mopane 
woodland. High resolution remote sensing data is capable 
of achieving higher mapping accuracies by identifying indi-
vidual crowns (Wulder and Franklin 2003). This is an im-
portant benefit for mapping and monitoring Imbrasia belina 
in mopane woodland as it helps to dissociate insect defolia-
tion from other events, such as climate disturbance and phe-
nology of forest type (Stone and Coops 2004). Given this 
development, it is prudent to assess what remotely sensed 
methods or data sources may have potential for detecting, 
mapping and monitoring defoliation in mopane woodland. 
Since defoliation of mopane woodland by mopane worms 
occurred in the past and will likely occur again in the future, 
lessons learned from this research may be applied in future 
mopane woodland management. As such, a lot of research 

has still to be done to fully understand the potential of 
high spatial and spectral resolution data in insect 
defoliation especially in broadleaf forest defoliation such 
as mopane woodland. 
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