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ABSTRACT 
Sugarcane (Saccharum spp.) is an important cash crop accounting for nearly two thirds of the world sugar production. Much effort has 
and is still being devoted to breeding resistant varieties, as the crop is vulnerable to a number of diseases that affect production. These 
constraints have triggered the adoption of biotechnological tools to counteract the impact of diseases on sugarcane. The increasing use of 
biotechnology is enabling early detection of pathogens of fungal, viral, bacterial and phytoplasma origin, allowing preventive measures to 
be adopted much earlier, before the appearance of disease symptoms as well as enabling the increased use of clean seed for establishment 
of nurseries and for the exchange of germplasm. The strategy of developing transgenic sugarcane varieties for resistance to several 
diseases is now well established and several transgenic lines are being evaluated in the field in a number of countries, although no 
commercial transgenic cane is grown thus far. Recent advances in sugarcane genomics as well as the genomics of sugarcane pathogens 
will soon provide information on disease resistance genes enabling new measures to be adopted in the breeding for disease resistance. 
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INTRODUCTION 
 
Sugarcane (Saccharum spp. Poaceae) is a major cash crop 
grown in tropical and sub-tropical countries around the 
world (Cheavegatti-Gianotto et al. 2011). With its soft and 
watery culm, it has been exploited primarily for sugar pro-
duction, with a world production of about 160 million 

tonnes for the 2009-2010 period (USDA 2009) and ac-
counting for nearly two third of global sugar production 
(D’Hont et al. 2008), the remaining being obtained from 
sugar beet (Beta vulgaris L., Chenopodiaceae). Recently, 
sugarcane has enhanced its importance as an energy crop 
(Cheavegatti-Gianotto et al. 2011) for ethanol production 
and as a source of energy through burning of bagasse, a 
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major by-product generated in the mill after extraction of 
sucrose from the stalk (Menossi et al. 2008). 

Commercial sugarcane varieties cultivated nowadays 
are hybrids derived mainly from crosses involving S. offici-
narum – also known as noble canes – the high sugar content 
species with poor disease resistance and vigour, and S. 
spontaneum – the wild species with high disease resistance 
and high vigour. Despite progress made in genetic improve-
ment of sugarcane, the crop is still confronted with diverse 
diseases that still pose major constraints to its production. 
Some 120 sugarcane diseases have been reported (Rott et al. 
2000a) and can be categorized as of bacterial, viral, fungal 
and phytoplasmal origin. Before the release of new im-
proved cultivars in any breeding programme, their evalua-
tion to major diseases is essential. In addition, management 
through cultural practices, crop hygiene and use of disease-
free planting material produced by heat treatment is neces-
sary. The use of chemicals in sugarcane disease manage-
ment is limited to specific cases. As in all crops, diagnostics 
play a major role in early detection of pathogens, their 
identification and characterization, which in turn allow 
better disease management. 

This review considers the major applications of biotech-
nology to seek for disease resistance and the application of 
molecular diagnostics in early, specific and rapid charac-
terization of sugarcane pathogens. 
 
BIOSECURITY 
 
Movement of genetic resources (stalks pieces, rhizome 
pieces, tissue culture plantlets) among sugarcane-producing 
countries is fundamental to increase productivity. For coun-
tries with a breeding programme, introduced varieties are 
used in crossing or considered for commercial cultivation 
after evaluation. The transfer of sugarcane from one region 
or from one country to another involves risks that should be 
thoroughly assessed, given that the introduction of a disease 
may have a devastating effect on the industry. Rooted plant 
material (except for tissue culture plantlets) is not recom-
mended. Diseases of concern during movement of germ-
plasm are some fungal and bacterial ones, as well as viruses 
and phytoplasmas. Major diseases transmitted through cut-
tings are given in Table 1. 

In general, imported planting material usually under-
goes quarantine in confinement for a period of two years. 
Prior to the application of laboratory diagnostic techniques, 
the presence of diseases was based on the appearance of 
symptoms. It is likely that in the past, several undetected 
sett-borne diseases have owing to latency of the pathogen, 
e.g. ratoon stunt, leaf scald, or due to the fact that they were 
not previously recognized, e.g. yellow leaf, leaf yellows, 
leaf fleck and mild mosaic. Measures that have now been 
taken to reduce risks of disease introduction include: 
- No authorization to import from high-risk areas 
- Pre-export quarantine procedures 
- Heat treatment of cuttings 
- Movement of disease-free tissue culture plantlets 
- Quarantine at a site away from sugarcane areas 
- Comprehensive disease detection methods, with empha-
sis on molecular tools. 

Procedures for the safe movement of sugarcane germ-
plasm have been described by Frison and Putter (1993) and 
Bailey et al. (2000). It is to note, that a disease such as leaf 
fleck caused by a ds-DNA virus cannot be eliminated from 
the infected plant by any means. Its presence is conse-
quently not given much importance during quarantine by 
many countries, the more so that currently no impact of the 
disease has been shown in commercial cultivars. 

Biosecurity is more and more being treated as a global 
or regional issue. The South African Sugarcane Research 
Institute (SASRI) provides quarantine services for other 
African countries (van Antwerpen et al. 2001). Australia, a 
major sugar producer, has examined the threat posed by 
exotic diseases from Indonesia and Papua New Guinea 
(Magarey et al. 2008). As a result, screening tests for sugar-

cane have been developed against Ramu stunt and smut and 
information collected on sugarcane mosaic disease present 
across the region. The Centre de Coopération Internationale 
en Recherche Agronomique pour le Développement 
(CIRAD) has a fully equipped international quarantine unit, 
recently given a new name, Visacane that distributes clones 
from a number of different sources (international varieties, 
clones created by CIRAD in Guadeloupe and by the West 
Indies Central Sugarcane Breeding Station in Barbados). 
After two growth cycles, healthy cuttings are sent to sugar-
cane growing regions in West and Central Africa and to 
sugarcane breeding stations in the Guadeloupe and Réunion 
(Rott et al. 1997). Visacane is meant for both import and 
export of varieties from and to most sugarcane countries in 
the world (Girard et al. 2011). 

Among the various sugarcane diseases intercepted in 
quarantine in the past, mosaic and ratoon stunt were com-
monly encountered. Currently, the most common one is 
yellow leaf caused by Sugarcane yellow leaf virus (SCYLV). 
Although a quite recently identified virus (Lockhart et al. 
1996; Vega et al. 1997; Scagliusi and Lockhart 2000) the 
frequency of its detection is very high. van Antwerpen 
(2006) reported that the release of imported varieties from 
quarantine had been seriously hampered by the frequent 
presence of the SCYLV. Chatenet et al. (2001) detected 
SCYLV in the CIRAD sugarcane quarantine at Montpellier 
by reverse transcription-polymerase chain reaction and/or 
tissue-blot immunoassay (TBIA) in varieties from Barbados, 
Brazil, Cuba, Florida, Guadeloupe, Indonesia, Malaysia, 
Mauritius, Philippines, Puerto Rico, Réunion and Taiwan 
suggesting a worldwide distribution of the pathogen. Par-
messur et al. (2002) also detected this virus in a number of 
varieties imported from different countries and undergoing 
quarantine in Mauritius. Occurrence of at least four geno-
types of the SCYLV (Abu-Ahmad et al. 2006a) justifies the 
precautions taken against this disease by several quarantine 
facilities. 

Detection is a critical step in the containment of sugar-
cane pathogens. Molecular diagnostics have been instru-
mental in achieving this, in addition to the understanding of 
their epidemiology and diversity. 

 
DETECTION OF SUGARCANE DISEASES USING 
MOLECULAR TOOLS 
 
Traditionally the detection and characterization of plant 
pathogens are based on symptoms expressed by the host 
plant. For some bacterial and fungal pathogens, isolation of 
the microorganism and microscopic observations are used. 
For viruses and phytoplasmas, recourse to electron micro-
scope or transmission to indicator plants is required. In the 
1970s with the advent of serological techniques such as 
enzyme linked immunosorbent assay (ELISA) and DNA 
recombinant technology, diagnostics of plant pathogens 
have been greatly improved. Over the years, further deve-
lopment of these technologies have resulted in improved 
techniques such as polymerase chain reaction (PCR), 
reverse transcriptase-PCR (RT-PCR), immuno-capture-PCR, 
Real-Time PCR and microarrays. 

Molecular diagnostics are available for most of the 
sugarcane pathogens of bacterial, viral, phytoplasmal, and 
fungal origin. Xie et al. (2009) reported the simultaneous 
detection of four viruses using one step RT-PCR. Efficient 
PCR methods have been developed for the quantification 
and detection of major bacterial pathogens of sugarcane 
(Rott and Davis 2004), while molecular tools have been ins-
trumental in improving detection of phytoplasmas (Doo-
kun-Saumtally et al. 2008). Prospects for the future include 
microarray or DNA chips and processors that will be made 
available to characterize unknown DNA samples to enable 
identification of sugarcane pathogens. 
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Table 1 Major sugarcane diseases that may be introduced through importation of cuttings, their causal organism and distribution. 

Diseases Pathogen Distribution according to Rott et al. (2000b) 

Bacterial 

Gumming Xanthomonas axonopodis 
pv. vasculorum 

Antigua, Argentina, Belize, Brazil, Colombia, Cuba, Dominica, Dominican Republic, Fiji, Ghana, 
India, Madagascar, Madeira, Malawi, Mauritius, Mozambique, Panama, Puerto Rico, Réunion, St 
Kitts and Nevis, St Lucia, St Vincent, South Africa, Swaziland, Zimbabwe 

Leaf scald 

 

Xanthomonas albilineans Argentina, Australia, Barbados, Belize, Benin, Brazil, Burkina Faso, Burundi, Cameroon, Chad, 
China, Colombia, Congo, Côte D’Ivoire, Cuba, Democratic Republic of the Congo, Dominica, 
Dominican Republic, Ecuador, Fiji, Ghana, Grenada, Guadeloupe, Guatemala, Guyana, Hawaii, 
India, Indonesia, Iraq, Jamaica, Japan, Kenya, Madagascar, Malawi, Malaysia, Martinique, 
Mauritius, Mexico, Morocco, Mozambique, Myanmar, Nigeria, Pakistan, Panama, Papua New 
Guinea, Philippines, Puerto Rico, Réunion, St Kitts and Nevis, St Lucia, St Vincent, South Africa, Sri 
Lanka, Surinam, Swaziland, Tahiti, Tanzania, Taiwan, Thailand, Trinidad, Uruguay, USA, Venezuela, 
Vietnam, Zambia, Zimbabwe 

Ratoon stunt 

 

Leifsonia xyli subsp. xyli Antigua, Argentina, Australia, Bangladesh, Barbados, Belize, Bolivia, Brazil, Burkina Faso, 
Cameroon, China, Colombia, Congo, Costa Rica, Côte D’Ivoire, Cuba, Democratic Republic of the 
Congo, Dominican Republic, Ecuador, Egypt, El Salvador, Ethiopia, Fiji, Guadeloupe, Guyana, 
Hawaii, India, Indonesia, Japan, Kenya, Madagascar, Malawi, Malaysia, Mali, Martinique, 
Mauritius, Mexico, Mozambique, Myanmar, Nicaragua, Nigeria, Pakistan, Panama, Papua New 
Guinea, Peru, Philippines, Puerto Rico, Réunion, St Kitts and Nevis, South Africa, Sri Lanka, Sudan, 
Swaziland, Taiwan, Tanzania, Thailand, Trinidad, Uganda, Uruguay, USA, Venezuela, Zambia, 
Zimbabwe 

Fungal 

Downy mildew Peronosclerospora 
sacchari 

Indonesia, India, Fiji, Japan, Papua New Guinea, Philippines, Taiwan, Thailand 

Red rot 

 

Colletotricum 
tucumanensis 

Afghanistan, Angola, Antigua, Argentina, Australia, Bangladesh, Barbados, Belize, Benin, Bolivia, 
Brazil, Burkina Faso, Burundi, Cambodia, Central African Republic, Chad, China, Colombia, Côte 
D’Ivoire, Cuba, Democratic Republic of the Congo, Dominican Republic, Egypt, El Salvador, Fiji, 
Gabon, Ghana, Guadeloupe, Guam, Guatemala, Guyana, Haiti, Hawaii, India, Indonesia, Iraq, 
Jamaica, Japan, Kenya, Madagascar, Madeira, Malawi, Malaysia, Mauritius, Mexico, Morocco, 
Mozambique, Myanmar, Nepal, Nicaragua, Niger, Nigeria, Pakistan, Panama, Papua New Guinea, 
Peru, Philippines, Puerto Rico, Réunion, St Kitts and Nevis, St Lucia, Samoa, Solomon Islands, 
South Africa, Sri Lanka, Swaziland, Taiwan, Tanzania, Thailand, Togo, Trinidad, Uganda, Uruguay, 
USA, Vanuatu, Venezuela, Vietnam, Zimbabwe 

Smut 

 

Ustilago scitaminea Afghanistan, Antigua, Argentina, Australia, Bangladesh, Barbados, Belize, Bolivia, Brazil, Burkina 
Faso, Burundi, Cambodia, Cameroon, Chad, China, Colombia, Congo, Costa Rica, Côte D’Ivoire, 
Cuba, Democratic Republic of the Congo, Dominica, Dominican Republic, Egypt, El Salvador, 
Ethiopia, Fiji, Gabon, Guadeloupe, Guatemala, Guyana, Haiti, Hawaii, Honduras, India, Indonesia, 
Iran, Iraq, Jamaica, Japan, Kenya, Madagascar, Malawi, Malaysia, Mali, Martinique, Mauritius, 
Mexico, Morocco, Mozambique, Myanmar, Nepal, Nicaragua, Niger, Nigeria, Pakistan, Panama, 
Paraguay, Peru?, Philippines, Portugal, Puerto Rico, Réunion, St Kitts and Nevis, Senegal, Somalia, 
South Africa, Sri Lanka, Sudan, Swaziland, Taiwan, Tanzania, Thailand, Trinidad, Uganda, Uruguay, 
USA, Venezuela, Vietnam, Zambia, Zimbabwe 

Phytoplasma 

Grassy shoot – GS GS phytoplasma Bangladesh, India, Iran, Malaysia, Myanmar, Nepal, Pakistan, Sri Lanka, Sudan, Thailand 

White leaf – WL 

 

WL phytoplasma Japan, Pakistan, Sri Lanka, Taiwan, Thailand 

Viral 

Fiji leaf gall Fiji disease virus Australia, Fiji, Indonesia, Madagascar (not detected since 1971), Malaysia, New Caledonia, Papua 
New Guinea, Philippines, Samoa, Solomon Islands, Thailand, Vanuatu 
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VIRUS DISEASES 
 
Sugarcane yellow leaf virus 

 
Sugarcane yellow leaf virus, the causal agent of yellow leaf 
of sugarcane is present in all major sugarcane producing 
countries of the world (Lockhart and Cronjé 2000) and is 
characterized by intense yellowing of the midrib and 
necrosis of leaves. However, similar symptoms may occur 
as a result of stress conditions or in the presence of a phyto-
plasma (Cronjé et al. 1998; Aljanabi et al. 2001). But it is 
also known that infected plants can remain symptomless. 
Using SCYLV specific primers YLS462 and YLS111 (M. 
Irey, unpublished), Comstock et al. (1998) developed a spe-
cific RT-PCR assay for sensitive detection of the virus. 

When this virus was first described, it proved to be a 
major obstacle in the international movement of germplasm 
especially due to its ubiquitous nature and because of the 
inability of hot water treatment to eliminate this pathogen. 
Subsequently, tissue culture techniques (Chatenet et al. 
2001; Parmessur et al. 2002) have been successfully applied 
to clean SCYLV infected sugarcane plants. The RT-PCR 
test developed by Comstock et al. (1998) is extremely im-
portant in confirmation of virus elimination, considering 
that one is dealing with plantlets with very low virus titre. 

Improvement over the conventional RT-PCR has been 
proposed, in the form of a real-time Taqman PCR with 100-
fold increase in sensitivity (Korimbocus et al. 2002). A 
major advantage of this protocol is the inclusion of an inter-
nal positive control which increases the reliability of the test 
by eliminating false negatives. Another sensitive SCYLV 
diagnostic, that detects even up to 100 fg of purified virus, 
uses molecular beacons for real-time detection of amplified 
PCR products (Gonçalves et al. 2002). 

Molecular studies have been useful in studying genetic 
diversity of SCYLV. Moonan and Mirkov (2002) reported 
geographical grouping of strains collected from North, 
South and Central America. Diversity, both between and 
within strains, collected from various worldwide geographic 
locations was shown by Borg et al. (2001). Abu-Ahmad et 

al. (2006a, 2006b) identified four genotypes of SCYLV of 
different geographical origins (genotypes BRA from Brazil, 
PER from Peru, CUB from Cuba and REU from Réunion). 
Three specific RT-PCR tests have been developed for the 
genotypes REU, CUB and BRA-PER, the latter clustering 
groups BRA and PER, due to limitation of the primers to 
differentiate between them. Variations in infection capacity 
and virulence have also been reported among the different 
genotypes (Abu-Ahmad et al. 2007). Recently, two new 
genotypes have been also reported (Viswanathan et al. 
2008b; Wang and Zhou 2010). 

 
Sugarcane mosaic virus 
 
Sugarcane mosaic virus (SCMV) and Sorghum mosaic 
virus (SrMV), two viruses causing mosaic disease of sugar-
cane, are known to consist of several strains based on symp-
toms on differential host plants. The RT-PCR assay of 
Smith and Van de Velde (1994) allowed sensitive detection 
of SCMV, but strain differentiation was not possible. Res-
triction fragment length polymorphism (RFLP) analysis 
following RT-PCR allowed the discrimination of strains of 
SCMV and SrMV (Yang and Mirkov 1997). PCR-RFLP has 
been useful in the study of genetic diversity of viruses pro-
ducing mosaic symptoms in Louisiana (Grisham and Pan 
2007) and Tucumán, Argentina (Perera et al. 2009). Using 
these sets of primers and RFLP analysis, Grisham and Pan 
(2007) studied the genetic diversity of viruses resulting in 
mosaic symptoms in Louisiana. New variants of SCMV 
were reported in India (Viswanathan et al. 2009) following 
use of SCMV coat protein specific primers and sequencing 
of the amplified products. As a means to simplify the study 
of new variants, Gomez et al. (2009) used a crude method 
of RNA purification (submerging of leaf in extraction buffer 
followed by incubation at 95�C). PCR products were then 
sequenced directly using primers similar to those used in 
RT-PCR. 
 
 
 

Mosaic 

 

Sugarcane mosaic virus 
Sorghum mosaic virus 

Andaman Islands, Angola, Argentina, Australia, Bangladesh, Belize, Bolivia, Brazil, Burundi, 
Cambodia, Cameroon, Cape Verde, China, Colombia, Congo, Costa Rica, Côte D’Ivoire, Cuba, 
Democratic Republic of the Congo, Dominican Republic, Ecuador, Egypt, El Salvador, Ethiopia, 
Fiji, Gabon, Ghana, Guatemala, Haiti, Hawaii, Honduras, India, Indonesia, Iran, Iraq, Italy, Jamaica, 
Japan, Kenya, Laos, Malawi, Malaysia, Mexico, Morocco, Myanmar, Nepal, Nicaragua, Nigeria, 
Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Puerto Rico, Réunion, St Kitts 
and Nevis, St Thomas, Sierra Leone, South Africa, Spain, Sri Lanka, Surinam, Swaziland, Tanzania, 
Taiwan, Thailand, Trinidad, Turkey, Uganda, Uruguay, USA, Venezuela, Vietnam, Zambia, 
Zimbabwe 

Streak Sugarcane streak virus Benin, Cape Verde, Côte D’Ivoire, Egypt, India, Kenya, Madeira, Malawi, Mauritius, Mozambique, 
Pakistan, Réunion, South Africa, Sudan, Uganda, Zimbabwe 

Streak mosaic Sugarcane streak mosaic 
virus 

Bangladesh, India, Pakistan, Sri Lanka, Thailand, USA (Chatenet et al. 2005) 

Yellow leaf 

 

Sugarcane yellow leaf 
virus 

Argentina, Australia, Barbados, Brazil, Colombia, Cuba, Dominican Republic, El Salvador, 
Guadeloupe, Guatemala, Hawaii, India, Iran, Jamaica, Kenya, Malawi, Martinique, Mauritius, 
Mexico, Morocco, Mozambique, Nicaragua, Papua New Guinea, Peru, Réunion, Senegal, South 
Africa, Swaziland, Thailand, Uganda, USA, Venezuela, Zambia, Zimbabwe 

Chlorotic streak unknown Argentina, Australia, Brazil, Cambodia, China, Colombia, Côte D’Ivoire, Cuba, Dominican 
Republic, Fiji, Grenada, Guadeloupe, Guyana, Hawaii, Honduras, Indonesia, Jamaica, Madagascar, 
Mali, Martinique, Mauritius, Mexico, Mozambique, Nicaragua, Pakistan, Panama, Papua New 
Guinea, Philippines, Puerto Rico, Réunion, St Lucia, Samoa, South Africa, Surinam, Taiwan, 
Thailand, Trinidad, Turkey, USA, Venezuela 

Source of Photographs: MSIRI 
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Sugarcane streak mosaic virus 
 
The occurrence of new sugarcane diseases, Sugarcane 
streak mosaic virus (SCSMV) for instance, highlights the 
importance and need for effective detection methods at qua-
rantine level. This disease was originally thought to be a 
member of the mosaic group based on symptoms, but failed 
to react with antisera produced against SCMV (Hall et al. 
1998; Hema et al. 1999). Subsequent molecular characteri-
zation has established that the virus belongs to a new virus, 
Susmovirus in Potyviridae (Viswanathan et al. 2008a). Initi-
ally confined to the Indo-Pak subcontinent, this virus has 
since been detected using RT-PCR in germplasm collection 
in China (Xie et al. 2009) and could possibly be more com-
mon in Asia than SCMV. 
 
Sugarcane striate mosaic associated virus 
 
Based on the complete sequence and genome organization 
analysis, Sugarcane striate mosaic associated virus 
(ScSMaV), Thompson and Randles (2001) concluded that it 
does not belong to any of the common viruses and rep-
resent a new taxon. An RT-PCR assay was used to amplify a 
820-bp fragment specific to SCSMaV (Choi et al. 1999). 
 
Sugarcane streak virus 
 
Three viruses are known to cause streak symptoms in sugar-
cane; SSV: Sugarcane streak virus-Natal, SSMV: Sugar-
cane streak Mauritius virus, and SSEV: Sugarcane streak 
Egypt virus (Bigarré et al. 1999). For the latter, a PCR-
ELISA protocol combining the specificity of molecular 
tools and ease of colourimetric methods was shown to be 
10-100 fold more sensitive than electrophoretic determina-
tion of PCR products (Shamloul et al. 2001). Recently, a 
non-PCR based amplification strategy, using phi29 DNA 
polymerase was developed (Owor et al. 2007). This tech-
nique was useful for the study of diversity of African streak 
viruses (Shepherd et al. 2008; Varsani et al. 2008). 

 
Sugarcane Fiji disease virus 
 
The Fiji leaf gall disease caused by Sugarcane Fiji disease 
virus (SCFDV) is an important quarantine disease in many 
sugarcane growing areas of the world. Detection based on 
symptoms is time-consuming and difficult in some cases. 
Lab-based techniques, both serological and molecular, have 
been devised for the sensitive detection of SCFDV. cDNA 
probes were proposed as an improvement in sensitivity over 
ELISA (Skotnicki et al. 1986; Smith et al. 1994). Detection 
sensitivity using the northern blot was up to 0.5 pg of virus 
(Smith et al. 1994). The SCFDV has a double stranded 
RNA genome and Smith et al. (1992) utilized a primer/ 
template boil-quench strategy for specific amplification of a 
fragment of the virus using RT-PCR. A sensitivity level of 
100 ag was observed, being 104-fold more sensitive than 
detection using probes. New primer pairs for SCFDV were 
designed from various regions of the segmented region of 
the virus genome and RT-PCR protocol was optimized by 
Smith and Van de Velde (1994). These authors reported en-
hanced sensitivity by performing hybridization with bio-
tinylated probes after the RT-PCR assay. The virus was 
detected in a 1:10-7 dilution nucleic acids extracted from 
250 mg of infected leaves. 
 
Sugarcane bacilliform virus 
 
A Sugarcane bacilliform virus (SCBV) specific primer pair 
SCBVF5/R5, amplifying a 221-bp product from the virus, 
was utilized and showed widespread occurrence of the virus 
in Saccharum and related germplasm (Braithwaite et al. 
1995). 
 
 
 

BACTERIAL DISEASES 
 
Implementation of accurate diagnostic techniques is essen-
tial in the control of sugarcane bacterial diseases on several 
fronts; use of clean planting material, quarantine diagnos-
tics and evaluation of varietal resistance. Ratoon stunt 
(caused by Leifsonia xyli subsp. xyli) and leaf scald (caused 
by Xanthomonas albilineans) are two important bacterial 
diseases of sugarcane. Gumming disease caused by Xantho-
monas axonopodis pv vasculorum is also important in some 
parts of the world. Due to limitations in traditional detection 
methods, DNA-based methods have been increasingly pro-
posed as more effective alternatives. 
 
Ratoon stunt 
 
Sensitive PCR protocols based on the ITS (internal trans-
cribed spacer) region of the 16S-23S rDNA have been deve-
loped for the detection of Leifsonia xyli subsp. xyli- Lxx 
(Fegan et al. 1998; Pan et al. 1998). These assays permitted 
amplification of the Lxx specific fragment directly from 
infected sugarcane vascular sap through the inclusion of 
PCR additives such as polyvinylpyrrolidone (PVP) and 
ficoll, which limited the negative effects of PCR inhibitors. 
Taylor et al. (2003) developed Lxx specific primers based 
on amplification products of RAPD primers OPC2 and 
OPC11. Since these PCR assays use vascular sap, the samp-
ling technique utilized is extremely important, and limita-
tions include number of stools to be sampled as well as time 
of sampling during the season. Even though infection due to 
Lxx is systemic in nature, the application of PCR techniques 
using leaf tissues were not as reliable as expected, most 
probably due to the low titre and occurrence of PCR inhib-
itors. Recently, Grisham et al. (2007) proposed a real-time 
PCR for the detection of Lxx in sugarcane leaf tissue at all 
stages of growth. It was shown that at older stages of plant 
growth, conventional PCR is less effective than real-time 
PCR for the detection of Lxx, due to increased levels of 
inhibitors. One of the advantages of using real-time PCR is 
the possibility of quantifying infection level occurring in 
tissues at a given time. The proposed real-time assay for 
Lxx compared favourably with tissue blot immunoassay in 
ranking cultivar susceptibility to the disease, even though 
sampling was performed at an earlier stage of plant growth; 
3-4 months for real-time assay as compared to 7-10 months 
for tissue blot assay. 

 
Xanthomonas albilineans 
 
Pan et al. (1997) designed primer pair Ala4/L1 which am-
plified a 360 bp fragment of the 16S/23S ITS region from 
Xanthomonas albilineans (Xa) worldwide isolates (inclu-
ding serovars I, II and III). However, the concurrent ampli-
fication of non-specific fragments (280, 420, and 460 bp) 
from three unidentified saprophytic bacteria was a major 
problem and visualization of PCR products required com-
plicated modifications at electrophoresis level or even by 
Southern hybridization. An improved primer pair from the 
same region was further designed by Pan et al. (1999) resul-
ting in a sensitive assay (up to 1 pg of Xa genomic DNA) 
targeting a specific 288 bp fragment from different strains. 

An unknown fragment from Xa type A isolate was 
cloned and sequenced and information thus obtained was 
used to design Xa specific primers, XAF1/XAR1 (Wang et 
al. 1999). Conventional PCR with these primers and vascu-
lar sap as template had a detection limit of 2 × 104 CFU/ml, 
whilst Bio-PCR (pre-enrichment of bacteria on artificial 
media followed by PCR) and isolation on semi-selective 
medium were 100x more sensitive for detection of Xa. 

Using subtractive hybridization of common sequences 
between X. albilineans (serovar I) and Xanthomonas axono-
podis pv. vasculorum, Jaufeerally-Fakim et al. (2000) cloned 
a fragment from an unspecified region of and eventually 
designed primers S83A/S83B. These produced a 300 bp 
fragment from genomic DNA of 38 isolates of Xa but not 
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from other related isolates. 
 

Gumming disease 
 
The gumming disease bacterium (Xanthomonas axonopodis 
pv. vasculorum) is of economic importance in Mauritius 
and Réunion Island. Diversity among strains has been 
proved using biochemical and physiological properties, 
serology as well as fatty acids and lipopolysacchararide 
profiles (Dookun 1993; Saumtally 1996). DNA-based as-
says, including RAPD (Random amplification of polymor-
phic DNA) primers and ERIC-PCR (enterobacterial repeti-
tive intergenic consensus primers) have also been useful in 
classification of strains (Saumtally 1996). 

 
DISEASES CAUSED BY PHYTOPLASMAS 
 
Phytoplasmas cannot be cultured in vitro and molecular 
tools, especially notably nested PCR are widely used for 
their detection. The known phytoplasma diseases infecting 
sugarcane include Sugarcane white leaf (SCWL), Sugar-
cane grassy shoot (SCGS) and sugarcane yellows phyto-
plasma (SCYP) (Cronjé et al. 1998; Aljanabi et al. 2001; 
Arocha et al. 2005). Nested PCR based on the 16S rRNA 
gene followed by RFLP is a common method for identi-
fication and classification of phytoplasmas (Lee et al. 1993; 
Schneider et al. 1993). A universal Taqman based assay, 
developed by Hodgetts et al. (2009), was similar to nested 
PCR in terms of sensitivity for the detection of 29 phyto-
plasma isolates, including all known 16S r RNA groups. 

 
FUNGAL DISEASES 
 
Smut 
 
Prompt diagnosis of sugarcane fungal diseases is essential 
for implementation of disease management practices. A sen-
sitive PCR assay was devised to detect Sporisorium scita-
mineum (syn. Ustilago scitaminea) DNA in smut-infected 
sugarcane plants (Albert and Schenck 1996). Using primers 
for the U. maidis mating-type gene, these authors amplified 
the gene from S. scitamineum. Subsequently, primer pair 
bE4/bE8 was designed to amplify specifically a 459 bp 
product from the (+) mating type of the smut pathogen. This 
technique was proven to be more sensitive and rapid than 
microscopy in detecting the pathogen from tissue culture 
plantlets (Albert and Schenck 1996; Singh et al. 2004). 
Whilst, this method proved to be effective in quarantine and 
diagnostic, it was not possible to assess the degree of smut 
resistance under natural infection. 

 
Brown rust and orange rust 
 
Molecular methods are extremely useful for accurate identi-
fication of rust diseases of sugarcane, namely brown rust 
(Puccinia melanocephala) and orange rust (Puccinia kueh-
nii). Although these two diseases are not transmitted by 
cuttings, the latter, especially, is of quarantine importance in 
many parts of the world. Orange rust, originally believed to 
be confined to Asia and Australia (Ryan and Egan 1989), 
was recently reported in Florida, USA (Comstock et al. 
2008), Central and Latin America (Ovalle et al. 2008; Cha-
varria et al. 2009; Flores et al. 2009; Barbasso et al. 2010) 
and in Africa (Saumtally et al. 2011). Sequence diversity in 
the ribosomal DNA region is commonly used for develop-
ment of detection methods for fungal pathogens. Based on 
partial ITS1, ITS2 and complete 5.8S sequences of world-
wide isolates of P. melanocephala and P. kuehnii, Glynn et 
al. (2010a) developed specific primers for use in conven-
tional PCR and real-time PCR allowing sensitive detection 
of both pathogens (up to 0.19 pg). For P. kuehnii, sequence 
analysis of the ITS1 region revealed a SNP – single nucleo-
tide polymorphism (A substituted for G) and a primer-
introduced restriction analysis-PCR (PIRA-PCR) strategy 
was devised with nested primers. Whilst the 183-A allele 

was observed in all samples, the 183-G allele was specific 
to samples from Asia and Australia. 
 
Red rot 
 
Red rot of sugarcane (Collelotrichum falcatum) is an impor-
tant fungal disease of sugarcane in the Indian subcontinent 
resulting in yield losses (Natarajan et al. 1998; Hussnain 
and Afghan 2006). Breeding for resistance against the pa-
thogen remains the major management strategy. However, 
traditional methods of identification of resistant cultivars 
are time and labour consuming. Molecular markers provide 
an attractive alternative. PCR-RFLP analysis of the ITS 
ribosomal DNA revealed the occurrence of two groups from 
a collection of six isolates from Andhra Pradesh, Orissa and 
Karnataka in India (Mishra and Behera 2009). RAPD group-
ing of C. falcatum isolates has been shown to correlate with 
pathogenicity on host cultivars (Mohanraj et al. 2002). 
Kumar et al. (2010) studied a total of 25 C. falcatum iso-
lates from northeastern states of India using three marker 
types; RAPD, inter simple sequence repeats – ISSRs and 
universal rice primers – URPs (Kang et al. 2002). URPs are 
repeat sequences from Korean weedy rice which are used 
for fingerprinting plants, animal and microbial genomes 
(Kang et al. 2002). In molecular analysis and phylogenetic 
analysis of 580 bp region of 5.8s rDNA-ITS genome of nine 
major pathotypes used for screening red rot resistance in 
India clearly showed divergence of two groups in C. fal-
catum. Vegetative compatibility grouping (VCG) test was 
standardized based on successful heterokaryon formation 
among nit mutants. These mutants were grouped into five 
major groups based on their compatibility and this approach 
was able to distinguish C. falcatum from other species and 
also it recognizes different isolates of the same pathotype. 
Although pathogenicity, VCG and ITS studies have slight 
variation in grouping the pathotypes, all the results distin-
guished two major groups with the incompatibility of 
Cf1148 and Cf7717 which is congruent with those groups 
established earlier on RAPD, differentials pathogenicity and 
serological approach (Malathi et al. 2010). 

 
DEVELOPMENT AND APPLICATION OF 
MOLECULAR MARKERS FOR DISEASE 
RESISTANCE 
 
The most efficient way to control diseases in sugarcane is 
through conventional breeding and use of resistant cultivars. 
However, conventional breeding faces a number of difficul-
ties in producing superior cultivars with pathogen resistance. 
Traditionally, resistance to diseases is evaluated in the field 
by exposing test varieties to the pathogen and assessing 
their reaction. Such trials are often influenced by a number 
of factors such as low or high disease pressure, physiolo-
gical age, plant architecture, climatic conditions, soil factors 
and growth condition of the plant. The numerous factors 
pose difficulties in accurately assessing the behaviour of a 
genotype to pathogens. Although a number of methods have 
been described for bacterial and fungal testing (Saumtally et 
al. 2000), evaluation to viruses and phytoplasmas, which in-
volves insect vectors remains to be difficult to assess. 

DNA markers associated with disease resistant traits can 
now provide valuable information in the breeding and sel-
ection of sugarcane. Progress in genetic mapping of sugar-
cane has identified quantitative trait loci for a number of 
disease resistance traits namely brown rust, smut, and yel-
low spot (Mycovellosiella koepkei). The first major gene for 
sugarcane to be mapped was that for brown rust resistance 
(Bru1 gene) in a segregating population from a selfed cul-
tivar R 570 which revealed a 3:1 segregation ratio indi-
cating a monogenic gene (Daugrois et al. 1996). This work 
has led to evaluate the potential of map-based cloning in 
sugarcane (Tomkins et al. 1999) as well as fine mapping of 
the rust resistance gene (Asnaghi et al. 2000). Later, Raboin 
et al. (2006) identified another potential major gene for rust 
resistance in cultivar MQ 76-53. This gene differs from 
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Bru1 gene and belongs to a different haplotype. PCR-based 
markers to identify sugarcane Bru1 resistance are available 
(D’Hont, pers comm.) and can be used to screen for resis-
tant cultivars carrying this gene. 

In 2007, Aljanabi et al. (2007) identified markers linked 
to QTLs for yellow spot disease resistance gene. A major 
QTL was found linked at 14 cM to an AFLP marker on the 
M 134/75 genetic map constructed using 557 single-dose 
polymorphic markers. Sorghum EST-markers are being ex-
ploited to further saturate the region with the major QTL 
(Parmessur et al. 2010). For smut, quantitative trait locus 
mapping in a population from a cross involving cultivar R 
570 x MQ 76/53, generated many markers with little effect, 
showing a complex determinism for smut resistance 
(Raboin et al. 2003). 

Microsatellite markers associated with SCYLV resis-
tance in progeny of a cross of Green German (susceptible) 
by IND 81-146 (resistant) has been reported (Comstock et 
al. 2004). Furthermore the authors predicted multiple gene 
mechanisms involved in SCYLV resistance. 

Expressed sequence tags (ESTs) resources developed 
through the Brazilian Sugarcane EST (SUCEST) project 
have also been useful in the identification of resistance gene 
analogs-RGAs (Rossi et al. 2003). The authors identified 88 
RGAs with sequence similarity of the three major typical 
groups of resistance genes; nucleotide-binding sites – leu-
cine-rich repeat (NBS-LRR), LRR and serine-threonine 
kinase (S/T kinase) domains. A number of the RGAs were 
successfully mapped on the sugarcane reference genetic 
map developed by Grivet et al. (1996) and Hoarau et al. 
(2001) with the objective to investigate the genomic distri-
bution of the RGAs with respect to disease resistance loci 
located in sugarcane. In addition to this work, You-Xiong et 
al. (2010) reported the cloning of six NBS-LRR type RGAs 
from cDNA of sugarcane variety NCo376. One of the 
RGAs expression profile was found to be influenced by 
smut infection to some extent. 

 
RECENT ADVANCES IN SUGARCANE GENOMICS 
 
In 2003, sugarcane DNA sequence information became 
available through the release of some 238,000 expressed 
sequence tags (ESTs) of sugarcane assembled under the 
Sugarcane EST project (SUCEST) (http://sucest.lad.ic. 
unicamp.br.en) (Vettore et al. 2003). This work highly com-
plemented a small collection ESTs produced by South 
African and Australian researchers (Carson and Botha 2000; 
Casu et al. 2001; Carson and Botha 2002; Carson et al. 
2002). EST sequencing has significantly contributed to gene 
discovery and expression studies to associate functions to 
sugarcane genes (Menossi et al. 2008). Through the trans-
criptome information genes involved in biotic and abiotic 
stress response, disease resistance and sucrose accumulation 
have been identified (Nishiyama et al. 2010). Mining of the 
sugarcane ESTs from the SUCEST project by Kuramae et 
al. (2002) managed to identify EST clusters similar to plant-
signaling molecules including pathogenicity related proteins. 

With part sequences of the sugarcane genome comple-
mented with the genome sequences of pathogens, candidate 
genes with potential applications in sugarcane protection 
should be available soon. The complete genomes of the two 
sugarcane bacteria, namely Leifsonia xyli subsp. xyli and 
Xanthomonas albilineans have been sequenced and the 
sequences are useful information for identification of patho-
genicity genes (Monteiro-Vitorello et al. 2004; Pieretti et al. 
2009). The genome of Xa has been found not to possess hrp 
genes that encode a type III secretion system, usually found 
in most gram-negative plant pathogenic bacteria (Pierreti et 
al. 2009). 

As for the gram-positive coryneform bacterium Leif-
sonia xyli subsp. xyli, the sequence revealed a 2584158 bp 
genome in length with a high content of G and C bases 
(Monteiro-Vitorello et al. 2004) and 307 pseudogenes; if 
functional would likely be associated in the degradation of 
plant heterosaccharides (Pierreti et al. 2009). It is also 

known that limited number of pathogenicity genes is pre-
sent in Lxx, and this could explain the discrete symptoms of 
the disease even at high bacterial titre (Monteiro-Vitorello 
et al. 2004). Furthermore the desaturase pathogenicity gene 
identified is likely involved in the synthesis of abscisic acid, 
a hormone that arrests growth and hence responsible for the 
stunting appearance of infected plants with Lxx (Pierreti et 
al. 2009). Thus the sequence of Lxx has allowed a number 
of questions to be answered on the biology of the pathogen 
and this information are of immediate and future value for 
sugarcane breeding programmes aiming at developing 
pathogen resistant cultivars. 

 
GENETIC TRANSFORMATION OF SUGARCANE 
TO INCREASE DISEASE RESISTANCE 
 
Diseases represent a major constraint to high yield and 
sugar productivity and therefore the release of resistant or 
tolerant sugarcane varieties is a very important aspect of 
sugarcane breeding. Although traditional breeding methods 
have so far proved effective in controlling major sugarcane 
diseases, they are however time consuming. Consequently, 
biotechnological applications have a major role to play to 
speed up development of disease resistant varieties. 

Genetic transformation of sugarcane together with 
tissue culture techniques has allowed the development of 
transgenic sugarcane. This technique, which in contrast to 
conventional breeding allows the combination of thousands 
of genes, provides a mean to transfer a specific gene which 
can be isolated from either a close or distantly related spe-
cies. Although in 2009 some 134 million ha were exploited 
worldwide with transgenic cotton, maize or soybeans, so far 
there is no commercially grown transgenic sugarcane 
(James 2009). 

Following the successful production of the first trans-
genic sugarcane plant in Australia expressing an antibiotic 
resistance (Bower and Birch 1992) a number of genes have 
been introduced in sugarcane. The first transgenic cane, for 
bacterial resistance, was developed by Birch (Zhang and 
Birch 1997), where a method to reduce or inhibit develop-
ment of leaf scald in sugarcane stalk was reported. The 
pathogen Xanthomonas albilineans is a systemic, xylem in-
vading bacterium and losses to the disease have been repor-
ted in a number of countries, but particularly in Australia, 
Guyana, Mauritius and South Africa (Ricaud and Ryan 
1989). The bacterium produces a number of phytotoxins 
and albicidin being the major one that blocks DNA replica-
tion and plastid development, and hence promotes chlorosis 
in disease systemic infection (Zhang and Birch 1997; Birch 
2001). Method to detoxify albicidin in susceptible sugar-
cane cultivars has been realized by the introduction and ex-
pression of the albD gene, isolated from another bacterium 
Pantoea dispersa, into the plant (Zhang and Birch 1997). 
Thereafter, little work has been done for bacterial resistance 
improvement in sugarcane via transgenesis, except for Lxx 
causing ratoon stunt (Avellaneda et al. 2008). 

More attention has been given in developing transgenic 
canes against viral pathogens. Sugarcane lines transformed 
for resistance to SCMV have been reported and the same 
was evaluated in the field. SCMV is one of the most impor-
tant viral pathogens of sugarcane worldwide. SCMV dis-
ease is caused by different strains of the virus and distinct 
potyviruses have been reported (Hardley et al. 2001). It 
comprises of a collection of four or five different poty-
viruses that include strains of SCMV; A, B, D and E, Sorg-
hum mosaic virus (SrMV), strains SCH, SCI and SCM, 
Johnson grass mosaic virus and Maize dwarf mosaic virus. 
In the 1920s, a worldwide epidemic of the disease severely 
affected major sugar industries in Argentina, Brazil and 
Louisiana (Ingelbrecht et al. 1999). Although conventional 
breeding has been able to produce tolerant varieties, 
breakdown of resistance has been another problem as new 
strains appear. In 2005, the Florida sugarcane industry esti-
mated a potential damage by SCMV to a tune of 1 billion 
US dollars (Gilbert et al. 2005). In order to increase SCMV 
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resistance in susceptible cultivars, recourse to genetic trans-
formation has recently been investigated. A number of 
authors have reported progress towards the development of 
mosaic resistant sugarcane cultivars using the gene transfer 
technology. Joyce at al. (1998) produced SCMV resistant 
lines following microprojectile bombardment with the virus 
coat protein gene. Ingelbrecht et al. (1999) produced trans-
genic sugarcane resistant to SrMV-SCH strain after expres-
sing an untranslatable region for of the coat protein (CP) 
gene of SrMV-SCH by inducing post-transcriptional gene 
silencing (PTGS). Sooknandan et al. (2003) also reported 
successful production of SCMV resistant sugarcane via 
transgenesis, again by induction of PTGS. Furthermore, 
transgenic sugarcane lines resistant to SCMV, strain E have 
been produced by Gilbert et al. (2005). From this study one 
hundred independent resistant lines have been evaluated in 
the field and a large variability was noted in both yield and 
disease resistance. However, the study allowed the identi-
fication of a number of transgenic lines with improved 
SCMV resistance when compared to commercial controls. 

Another viral disease of sugarcane that has retained 
much attention in recent years is yellow leaf. SCYLV can 
cause yield reduction in susceptible cultivars in the range of 
10 to 40% (Vega et al. 1997; Lockhart and Cronjé 2000; 
Rassaby et al. 2003; Lehrer et al. 2010). Resistance level 
varies from country to country. In Hawaii, resistance to 
SCYLV exists in several varieties (Schenck 2001), while in 
Mauritius 18 out of 20 commercial varieties checked for the 
presence of the virus were positive (Khoodoo et al. 2010) 
and only one variety was found free from the virus. But in 
general inadequate sources of SCYLV resistance limit the 
traditional breeding for resistance to the disease (Glynn et 
al. 2010b) hence once again genetic transformation technol-
ogy is an appropriate approach to increase resistance. Resis-
tance to the virus has been successful through coat-protein 
gene-based silencing and resistance levels were increased in 
transgenic lines compared to untransformed plants (Zhu et 
al. 2007). Inheritance of the transgenes in conventional 
breeding has been evaluated by using two transgenic 
SCYLV lines as parents in twelve crosses (Glynn 2010). 
The study demonstrated that 50% of the progeny inherited 
the SCYLV resistant transgene, thus showing the potential 
use of the transgenic resistant lines in conventional breed-
ing. 

Fiji leaf gall virus is another important disease of sugar-
cane that has caused devastating epidemics in Queensland, 
Australia. A plant hopper is the vector responsible for the 
transmission of the virus which belongs to the Reoviridae 
family and is a ds RNA virus. Much effort has been devoted 
by the Queensland sugar industry to develop resistant cul-
tivars, which has been successful. However during the im-
plementation of such programme, 80% of the germplasm 
was rejected for use in the breeding programme due to the 
virus susceptibility (Smith and Harding 2001). Cultivar Q 
124, with average resistance to Fiji leaf gall virus was gene-
tically transformed with a transgene encoding the translata-
ble version of the segment 9 ORF 1 under the control of the 
Ubi promoter (McQualter et al. 2004). After glasshouse 
trials of various lines tested, one transgenic line with sig-
nificantly enhanced resistance to the disease was obtained. 

 
CLEAN SEED PRODUCTION 
 
One of the methods to manage dissemination of seed-borne 
systemic sugarcane pathogens is through the provision of 
clean planting material from nurseries. Eradication of some 
sugarcane pathogens is possible through the application of 
tissue culture techniques. Tissue culture was first applied to 
sugarcane in the late 1960s and henceforth has been used to 
eliminate systemic pathogens. Viral diseases namely sugar-
cane mosaic, Fiji leaf gall, and yellow leaf have success-
fully been eliminated through meristem tip, axillary bud 
culture and callus culture (Leu 1972; Wagih et al. 1995; 
Chatenet et al. 2001; Fitch et al. 2001; Parmessur et al. 
2002). 

The elimination of sugarcane yellows phytoplasma 
(SCYP) causing leaf yellows disease has also been success-
ful after regenerating plantlets from callus derived from 
young leaf rolls (Parmessur et al. 2002). After a number of 
subcultures of callus cells, Parmessur et al. (2002) managed 
to eliminate both SCYLV and SCYP from infected material. 
As these techniques are being developed and adopted, 
demand for exchange of germplasm in the form of tissue 
culture plants amongst sugarcane research institutions is 
becoming important in the safe transfer of planting material 
from one country to another. 

 
CONCLUSION 
 
Sugarcane is a highly productive plant and in recent years 
its interest as a biofuel source has attracted additional atten-
tion. Many countries in Asia, South America and Africa are 
expanding their sugarcane cultivation areas. As new vari-
eties are released and grown in new areas, together with cli-
mate change, vulnerability to biotic stresses, it is expected 
that new problems might arise including new diseases and 
strains of pathogens. Proper disease management supported 
with an array of biotechnological progress, the understan-
ding of genomes of the pathogens affecting sugarcane as 
well as the sugarcane genome and its related Graminaceous 
crops such as sorghum and rice will allow a more efficient 
production system. The integration of biotechnological 
tools in the classical sugarcane improvement programme 
will no doubt improve the quality of varieties and tailor-
made varieties could in the long term be possible with the 
progress made in genomics, understanding the sugarcane 
genome as genetic transformation technology. In the next 
decade it is expected to see major advances in the diagnosis 
of sugarcane pathogens diagnostics as more sequence infor-
mation would be made available. The release of transgenic 
sugarcane improved for disease tolerance is also very likely 
to take place in the next decade as progress continues along 
this field. 
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