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ABSTRACT 
Mass spectrometry-based shotgun proteomics approaches are currently considered as the technology-of-choice for large-scale proteo-
genomics due to high throughput, good availability and relative ease of use. Protein mixtures are firstly digested with protease, e. g. 
trypsin, and the resultant peptides are analyzed using liquid chromatography - tandem mass spectrometry. Proteins and peptides are 
identified from the resultant tandem mass spectra by de novo interpretation of the spectra or by searching databases of putative sequences. 
Since this data represents the expressed proteins in the sample, it can be used to infer novel proteogenomic features when mapped to the 
genome. However, high-throughput mass spectrometry instruments can readily generate hundreds of thousands, perhaps millions, of 
spectra and the size of genomic databases, such as six-frame translated genome databases, is enormous. Therefore, computational 
demands are very high, and there is potential inaccuracy in peptide identification due to the large search space. These issues are 
considered the main challenges that limit the utilization of this approach. In this review, we highlight the efforts of the proteomics and 
bioinformatics communities to develop methods, algorithms and software tools that facilitate peptide sequence identification from 
databases in large-scale proteogenomic studies. 
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INTRODUCTION 
 
Proteomics aims to characterize the expressed proteins and 
the corresponding peptides in a given sample, including 
elucidation of their sequence, structure and function (Tyers 
and Mann 2003). Thus, proteome level investigation rep-
resents a rich source of information that complements the 
traditional genome analysis process. It become generally 
acknowledged that the inclusion of proteome data in the 
genome analysis results in better genome annotation in so-
called proteogenomics (Ansong et al. 2008a; Armengaud 
2009; de Groot et al. 2009; Armengaud 2010; Castellana 
and Bafna 2010). Proteogenomics is the utilization of large-
scale proteome data in genome annotation refinement 

(Ansong et al. 2008a). Due to their high throughput and ac-
curate measurement of the peptides, high-throughput mass 
spectrometry-based proteomics methods, such as liquid 
chromatography – tandem mass spectrometry (LC-MS/MS), 
can provide a rich source of translational-level expression 
evidence to support the predicted protein-coding genes. 
This approach seems the best option for identification and 
confirmation of the protein-coding genes, or at least signi-
ficant portion of them, in an independent and unambiguous 
way (Ansong et al. 2008a). This can be achieved by 
detecting the naturally occurring proteins (proteomics) and 
mapping them back to the genome sequence (genomics) in 
a systematic analysis, as presented in several recent reports 
(Ishino et al. 2007; Baerenfaller et al. 2008; Merrihew et al. 

® 



Genes, Genomes and Genomics 6 (Special Issue 1), 76-85 ©2012 Global Science Books 

 

2008; Bringans et al. 2009; Payne et al. 2010). 
For instance, Arabidopsis thaliana is the most studied 

plant and has the most thoroughly sequenced and annotated 
genome among plants. However, proteogenomics provided 
significant additions and corrections to its genome annota-
tion (Baerenfaller et al. 2008; Castellana et al. 2008). A 
genome-scale proteomics study, with intensive sampling of 
several organs and life stages and over 1,300 MS/MS runs, 
added 57 new gene models to the Arabidopsis annotation, 
providing expression evidence for all of them. Moreover, 
the same study provided functional annotation by flagging 
the proteins that were expressed in one organ only as bio-
markers (Baerenfaller et al. 2008). In another proteogeno-
mics study, nearly 13% of the Arabidopsis proteome was 
deemed incorrect or missing due to incorrect or missing 
gene models through the identification of 778 new protein-
coding genes and correction of 695 gene models (Castellana 
et al. 2008). These significant improvements in the best 
annotated plant genome, the Arabidopsis genome, demons-
trate the value of proteogenomics approaches in improving 
genome annotation and indicate their potential for expan-
ding incompletely annotated genomes. 

The utility of proteogenomics in achieving significant 
improvements in genome annotation has been shown in 
various eukaryotic and prokaryotic genomes. Several 
reports have presented novel genomic information obtained 
via large-scale mass spectrometry-based proteogenomics in 
human. Desiere et al. (2005) demonstrated large-scale 
integration between peptides obtained through high-
throughput proteomics and the human genome (Desiere et 
al. 2005). Power et al. (2009) found novel splice isoforms 
in human platelets by using a proteomics approach to 
identify the exon-skipping events (Power et al. 2009). The 
Caenorhabditis elegans (C. elegans) genome annotation 
was identified, corrected and confirmed using shotgun 
proteomics by identifying 429 unannotated coding sequen-
ces (including 33 pseudogenes), 151 errors in gene models 
and 254 novel gene models (Merrihew et al. 2008). The 
same approach is also applicable to the genomes of major 
plant crops such as rice (Helmy et al. 2011), fungi such as 
Aspergillus niger (the black mold fungus) (Wright et al. 
2009), parasites such as Plasmodium falsiparum (the mala-
ria parasite) and Toxoplasma gondii (Lasonder et al. 2002; 
Xia et al. 2008), insects such as Drosophila melanogaster 
(Tress et al. 2008; Loevenich et al. 2009), nematodes such 
as Pristionchus pacificus (Borchert et al. 2010) and Archaea 
such as Thermococcus gammatolerans (Zivanovic et al. 
2009). 

The basic outcome of a proteogenomic analysis is to 
validate the predicted gene models at the translational level, 
as presented in several reports (Jaffe et al. 2004a, 2004b; 
Wang et al. 2005). In addition, proteogenomics has been 
utilized to reveal many other significant genomic features, 
e.g., finding new gene models (Jaffe et al. 2004b; Baeren-
faller et al. 2008; Castellana et al. 2008; Merrihew et al. 
2008), determination of the protein start and termination 
sites (Nielsen and Krogh 2005; Mattow et al. 2007; Tanner 
et al. 2007), finding and verifying splice isoforms at the 
protein level (Tanner et al. 2007; Mo et al. 2008; Power et 
al. 2009) and verifying hypothetical and conserved hypo-
thetical genes/proteins (Kolker et al. 2004; Hixson et al. 
2006; Tanner et al. 2007; Ansong et al. 2008b). With such 
efficiency in the improvement of genome annotation, proteo-
genomics represents a promising approach to be applied to 
newly sequenced genomes, as well as for use in the primary 
annotation of the genome, rather than only to improve the 
annotation at a later stage (de Groot et al. 2009). 

In addition to finding novel genomic features to refine 
the genome annotation, proteogenomics can be applied in 
biomarker discovery (Baerenfaller et al. 2008; Sigdel and 
Sarwal 2008), for identification of antibody targets (Huang 
et al. 2004), to provide a better understanding of the host-
parasite relationship (Lasonder et al. 2002; Bindschedler et 
al. 2009; Delmotte et al. 2009) and to understand the mecha-
nisms of ecological diversity and environmental adaptation 

(de Groot et al. 2009; Denef et al. 2010). Further, proteo-
genomic studies have been performed on several genomes 
of related species to identify rare post-translational modi-
fications (Gupta et al. 2008), to investigate adaptive muta-
tion capabilities among species (Bechah et al. 2010) and to 
understand diversity-shaping events between species (Nou-
vel et al. 2010). Proteogenomics also provides novel insight 
in cancer research, either in finding biomarkers, related 
somatic mutations or diagnosis (Jacob et al. 2009; Helmy et 
al. 2010). 
 
LARGE-SCALE PROTEOGENOMICS WORKFLOW 
 
Usually, large-scale proteome analyses are required for 
proteogenomics projects. In a typical proteogenomics pro-
ject (Fig. 1), high-throughput proteomics (usually mass 
spectrometry-based) is used to obtain the sequences of the 
peptides of the sample in question (Castellana and Bafna 
2010). The peptides are obtained through proteolytic diges-
tion of the extracted proteins with proteases such as trypsin 
and Lys-C. The peptides are later pre-fractionated using 
several fractionation methods, such as strong cation ex-
change-StageTips (SCX-StageTips) (Ishihama et al. 2006) 
and isoelectric focusing (IEF) (Cargile et al. 2004), then the 
fractions are processed and prepared for mass spectrometry 
(MS/MS) analysis. The MS/MS analysis results in thou-
sands or even millions of MS/MS spectra that hold the pep-
tide fingerprints. The peptide sequences corresponding to 
the MS/MS spectra are later identified using i) de novo 
interpretation of the spectra (Seidler et al. 2010) or ii) data-
base search of putative sequences (Sadygov et al. 2004; 
Kapp and Schutz 2007). 

After obtaining the peptide sequences, proteogenomic 
analysis is conducted, but the details of the analysis are dif-
ferent according to the availability of the genome annota-
tion (newly sequenced genome or annotated genome), the 
genome complexity (prokaryotic or eukaryotic genome) and 
the available informatics tools. However, here we will des-
cribe general steps that are shared in a wide range of proteo-
genomics projects. 

1) If the genome sequence and genome annotation of 
the organism are available: the peptides are mapped to the 
genome using several computational methods, mostly se-
quence alignment tools such as different types of BLAST 
(Altschul et al. 1990, 1997; Tatusova and Madden 1999). 
Then, the alignment results can be compared with the cur-
rent annotation to confirm and improve the annotated gene 
models (Kalume et al. 2005; Xia et al. 2008; Payne et al. 
2010) or to perform whole genome re-annotation using 
gene-finding tools that use the peptide information as hints 
to improve the predictive capability, such as AUGUSTUS 
(Stanke et al. 2008). 

2) If the genome is newly sequenced: the proteome 
information (peptide sequences) is included in the primary 
genome annotation process. So far, there are two examples 
of proteogenomics integration in the primary annotation of 
a newly sequenced genome, the Mycoplasma mobile 
genome annotation (Jaffe et al. 2004b) and the Deinococcus 
deserti genome annotation (de Groot et al. 2009). 

One of the key points in the workflow is to identify the 
amino acid sequences corresponding to the MS/MS spectra 
accurately and efficiently, since the accuracy of the re-
maining steps is highly dependent on these sequences. 
Although database searching is considered the most reliable 
approach to identify peptide sequences from MS/MS spec-
tra, and is the most widely used, it represents a bottleneck in 
large-scale proteogenomics, especially when large data-
bases are employed (Zhou et al. 2010). Most proteogeno-
mic studies have used the six-frame translation of the gen-
ome database for peptide sequence identification. Searching 
large-scale MS/MS data against such database is not a tri-
vial task due to the enormous size of both the MS/MS data 
set and the database, and the linear relationship between 
search time and database size (Edwards 2007). Thus, the 
computational demands for such search are in some cases 
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so high as to be unaffordable. For example, 260 days of 
CPU time was required to run over 4,000 X!Tandem (Craig 
and Beavis 2003; Craig and Beavis 2004) searches against 
the Shewanella genome database (Turse et al. 2010), even 
though a PRISM computing cluster with 32 processing 
nodes was used (Kiebel et al. 2006). 

 
THE NEED FOR FASTER DATABASE SEARCHING 
METHODS 
 
Several database searching programs and algorithms are 
currently available, including SEQUEST (Eng et al. 1994), 
Mascot (Perkins et al. 1999), X!Tandem (Craig and Beavis 
2003; Craig and Beavis 2004) and several other tools and 
algorithms, including pFind (Wang et al. 2007), OMSSA 
(Geer et al. 2004), PepSplice (Roos et al. 2007), Phenyx 
(Colinge et al. 2003), PEAKS (SPIDER) (Ma et al. 2003) 

SpectrumMill (Agilent Technologies, CA), ProteinPilot 
(AB-Sciex, CA) and Crux (Park et al. 2008). These prog-
rams use different approaches to facilitate the peptide se-
quences identification from databases. However, these tools 
seem to be insufficient for proteogenomics application for 
the following reasons: 

 
1) The continuous expansion of the protein databases: for 
instance, the protein sequences in the IPI.Human database 
increased by ~30% from IPI.Human V3.22 to IPI.Human 
V3.49 (Li et al. 2010), while the size of the NCBInr protein 
sequence database doubled in about 18 months (Zhou et al. 
2010). 

 
2) Using the six-frame translation of the genome database 
and the genome-translated proteins: these genomic data-
bases are more suitable for proteogenomics and recent ad-
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Fig. 1 Simplified representation of large-scale proteogenomics workflow. Proteins are extracted from the sample and digested using suitable 
protease(s), e.g. trypsin, then the resultant peptides are pre-fractionated. The fractions are then processed and submitted to LC-MS/MS. The obtained 
MS/MS spectra are searched against putative sequence databases using search engines such as Mascot and SEQUEST to identify peptide sequences. The 
sequences are later mapped to the genome to confirm or update the genome annotation. 
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vances in genome sequencing techniques have made such 
databases easily available. However, the size of the six-
frame translation or the EST library that results from such 
database limits its utility. For example, the six-frame trans-
lation of the human genome database is over 6 Gbp and the 
EST library that results from its translation contains over 8 
million protein sequences (over 100 times more than the 
human proteome) (Li et al. 2010). 

 
3) The inclusion of chemical and post-translational modifi-
cations (PTMs): these modifications produce more peptides. 
For example, Zhou et al. (2010) showed that the inclusion 
of three variable post-translational modifications and up to 
two missed cleavage sites increased the number of peptides 
by ~ 38-fold, compared with the number that would result 
from a fully specific digestion of the IPI.Human database 
(Zhou et al. 2010). 

 
4) Using semi-specific or non-specific digestion: in these 
cases, the number of peptides to be considered is increased 
by 10- to over-100 fold, respectively, comparing with speci-
fic digestion. For instance, the fully non-specific digestion 
of the IPI.Human database V3.65 (Kersey et al. 2004) re-
sulted in a 170-fold increase in the non-redundant peptides, 
compared with fully specific digestion (Zhou et al. 2010). 

 
5) The continuous development in mass spectrometry ins-
truments: this has resulted in a remarkable increase in the 
generation rate of tandem mass spectra. An LTQ mass spec-
trometer from Thermo Fisher Scientific, for instance, can 
generate over 430,000 spectra per day while an LTQ Velos 
instrument, the newest LTQ model, can generate double this 
amount per day (Li et al. 2010; Zhou et al. 2010). 

 
6) The steady development of computer hardware: this still 
remains a step behind the development of mass spectro-
metry and genome sequencing techniques. We can see a 
common pattern in the development of the pioneering data-
base-searching programs, in that they follow the computer 
hardware development and try to make use of newly pre-
sented features to speed up database search (Kapp and 
Schutz 2007). For instance, the original implementation of 
SEQUEST performed the analysis sequentially, but was not 
multi-threaded and could not take advantage of multi-core 
CPUs (Eng et al. 1994). However, in later versions, 
SEQUEST was developed to be able to include modifi-
cations (Yates et al. 1995b), search EST databases (Yates et 
al. 1995a), and search high-energy CID data (Yates et al. 
1996); in parallel to these proteomics-related updates, a 
cluster version was introduced to make use of multi-core/ 
multi-computer systems (Kapp and Schutz 2007). Mascot 
and X!Tandem are multi-threaded and can take advantage 
of multiple CPUs with multiple cores in the same machine. 
Further, they both have cluster versions that can make use 
of multiple computers to perform the database search (Kapp 
and Schutz 2007). However, all these computational and 
hardware developments have failed to keep pace with the 
rapid developments of the analytical instruments. 

 
METHOD DEVELOPMENT TO SPEED UP 
DATABASE SEARCHING 
 
The need for continuous method development to improve 
the efficiency of peptide identification at reasonable compu-
tational cost is driven by the factors mentioned above. Thus, 
researchers in the proteomics and bioinformatics communi-
ties have developed several methods to facilitate the sear-
ching process. However, four aspects should be taken into 
consideration while developing new methods. 1) Significant 
reduction of the search time and computational demand is 
needed, since this is the main aim of developing improved 
methods. 2) The capability for identifying peptides should 
be similar to or better than that of the current methods. 3) 
The accuracy should not be affected, unless it is improved. 
4) The method should be flexible and have the ability to be 

integrated in different analysis workflows (Zhou et al. 
2010). 

In this survey, we review the efforts of scientists to 
speed up peptide identification from large databases during 
the last decade. Since the identification process involves 
three main players, the database, the searching algorithm 
and the experimental proteome data, methods are usually 
focused on one of these players to speed up the search pro-
cess. A wide range of methods has been proposed, including 
database preprocessing (indexing, reduction or splitting), 
developing faster search algorithms, reducing the number of 
spectra to be searched, using hybrid methods that combine 
de novo spectra interpretation with database searching and 
even directly involving computer hardware and low-level 
programming. Within the scope and space of this review, 
we present several methods from each category, trying to 
cover all approaches. 

 
DATABASE PREPROCESSING METHODS 
 
Methods in this category are mainly concerned with prepro-
cessing the databases in order to restrict the peptide search 
space. Restricting the search space leads to a reduction of 
the search time and the required resources to perform the 
search. Database preprocessing methods can be categorized 
into three sub-categories based on the type of preprocessing. 

 
Database indexing 
 
Database indexing, also known as peptide indexing, is one 
of the most widely used methods to facilitate peptide iden-
tification (Li et al. 2010). Several search engines use data-
base indexing approaches, such as SEQUEST (Eng et al. 
1994), pFind (Wang et al. 2007) and Crux (Park et al. 2008). 
Through the normal peptide identification process, the data-
base is preprocessed by performing in silico digestion of the 
entire database contents and the resultant in silico peptides 
are then matched to the spectra (Dutta and Chen 2007). 
However, the digested proteins produce redundant peptides 
which increase the total number of peptides and result in 
redundant matching and scoring. Recently, it was shown 
that redundant peptides represent about 50% of the total 
peptides (Li et al. 2010). Therefore, database indexing 
methods remove the redundancy and index the peptides 
with their mass. Then, for a given spectrum with precursor 
ion mass m and precursor ion tolerance �, the searching 
program selects from index peptides within the range [m-� 
~ m+�]. Thus, indexing allows the program to avoid the 
one-against-all comparison, thereby reducing search time 
and computational resources (Dutta and Chen 2007). Data-
base indexing methods can be divided into three main 
models. 

 
1. Off-line indexing 
 
In this approach, the digestion and indexing are performed 
once and the index is saved to the disk. The search program 
only needs to load the index from the disk and start sear-
ching. Obviously, this reduces the search time and the re-
quired processing power. However, the index is static and 
any change in the search parameters, e.g. modifications, 
requires reconstruction of the index (Zhou et al. 2010). 
 
2. On-line indexing 
 
In on-line indexing, the index is created on-the-fly after the 
input of the search parameters. This dynamic indexing over-
comes the disadvantage of off-line indexing, but it requires 
a longer time, since the search program needs to construct 
the index ahead of each search. Further, if the spectra are 
submitted in batches, a new index is constructed each time, 
even though the searching parameters are the same, and this 
redundancy increases search time and required processing 
power (Li et al. 2010). 
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3. Hybrid indexing 
 
There is a hybrid method that combines off-line and on-line 
indexing, that is used by pFind (Wang et al. 2007). pFind 
constructs an off-line index for the digested peptides and an 
on-line index for modified peptides. The construction of the 
on-line index with pFind was shown to take only 5% of the 
total identification time (Li et al. 2010). Recently, Li et al. 
(2010) performed systematic investigation of all the peptide 
sequence identification steps performed by the first genera-
tion of search engines (engines that perform direct mapping 
of the MS/MS spectra to peptides without any interpretation 
of the spectra), such as SEQUEST, Mascot, X!Tandem and 
pFind. These steps include the in silico digestion of the pro-
teins, peptide modification, peptide-precursor matching and 
fragment ion-peak matching. They were able to get a 5-fold 
increase in the identification speed compared to SEQUEST 
2.7 by constructing two indexes: i) peptide index and ii) 
precursor and fragment ion index. SEQUEST was used for 
the comparison of index structure, construction and query-
ing, since Mascot and X!Tandem do not use database index-
ing, while the efficiency was compared among the three of 
them. The new approach was implemented using pFind. 
The first index, the peptide index, speed up the identifica-
tion by 2~3 times, while the other index, precursor and frag-
ment ion index, added another two times (Li et al. 2010). 

 
Database reduction 
 
One of the most widely used methods to reduce the peptide 
identification time is database reduction. In these methods, 
a certain part of the database (that contains certain genomic 
features such as exons or open reading frames (ORFs)) is 
used for the identification, while the remaining portion is 
omitted. Database reduction methods significantly reduce 
the size of the database and, consequently, the search time. 
However, notable features that may be included in the 
omitted portion of the databases are lost. Several implemen-
tations of this approach have been presented in recent pro-
teogenomic projects. 
 
1. Exon graph 
 
Exon graph methods aim to construct a compact representa-
tion of the database while covering all splice variants in all 
genes. Tanner et al. (2007) used exons and introns derived 
from GeneID and ESTmapper and since the putative exons 
and Expressed Sequence Tags (EST) predicted by gene pre-
diction algorithms are from different lengths with overlaps, 
they compared them and merged them into larger intervals. 
If the interval overlaps an intron, the interval is split into 
two sub-intervals at the junction point. Then, edges are 
added between the adjacent intervals. Polymorphism was 
also incorporated in the graph by adding an interval for 
each allele if the interval contains a single-nucleotide poly-
morphism (SNP). To remove nodes corresponding to wrong 
mappings of reading frames, nodes and edges that are not 
part of a coding sequence of length 50 or more were re-
moved. Thus, each exon graph node has a protein sequence 
and possibly an untranslated prefix or suffix. The final exon 
graph database size was significantly reduced from the 
original two billion amino acid residues (EST database) and 
630 million residues (GeneID predicted exons) to 134 mil-
lion residues. Searching the exon graph database using 18.5 
million MS/MS spectra, the authors were able to validate 
exons and introns, confirm hypothetical proteins and dis-
cover alternative splicing events and extensions in known 
genes (Tanner et al. 2007). 

Castellana et al. (2008) used the exon graph method to 
create an exon splice-graph database for Arabidopsis. The 
exon splice-graph database together with the six-frame 
translation of the Arabidopsis genome database and the 
annotated protein database (TAIR7 database) were used to 
identify 18,024 novel peptides from 21 million MS/MS 
spectra obtained from Arabidopsis proteins. The novel pep-

tides were used to refine the Arabidopsis genome annota-
tion, yielding 778 new protein-coding genes and updating 
695 known gene models (Castellana et al. 2008). 

 
2. Sophisticated sequence database comparison strategy to 
search EST databases 
 
Aiming to identify peptides from alternative splicing iso-
forms and coding SNP proteins, Edwards suggested sear-
ching the ESTs. However, the enormous size of the EST 
database makes this proposal computationally infeasible. 
Edwards developed a sophisticated sequence database com-
parison strategy that resulted in a 35-fold reduction of the 
database size, making the identification of high-throughput 
MS/MS data from the EST database possible. This strategy 
requires the EST sequence to be mapped to the vicinity of a 
known gene, while the peptides are required to be contained 
in a 30-amino-acid ORF. Further, all peptides should be 
confirmed by at least two ESTs and the peptide sequence 
representation should avoid repetition. Applying this stra-
tegy to the human EST database reduced its size to less than 
3% of the six-frame translation of the human genome data-
base, thereby making this search possible using standard 
methods. The search time for the same MS/MS dataset and 
the same engine (Mascot) against the six-frame translation 
of the human genome database requires 22 hours, while this 
was reduced to 15 min with the reduced EST database. 
Furthermore, the results were similar, with some noticeable 
improvements in the second search (Edwards 2007). 

 
3. Metric embedding and fast near-neighbor search 
approach 
 
To avoid the one-against-all comparison that is used by 
most search engines, such as SEQUEST and Mascot, Dutta 
and Chen (2007) developed a novel method to preprocess 
the databases and create a limited subset of candidate pep-
tides for a given query spectrum. This was achieved through 
designing a set of hash functions, where a random spectrum 
is used for the construction of the hash function and the 
normalized shared peak count score between the random 
spectrum and the hypothetical spectrum of a peptide is used 
as a peptide value. High–dimensional metric space (Eucli-
dian space) and set of hash functions, constructed using 
random vectors, called locality-sensitive hashing (LSH), 
were used to implement the preprocessing, filtration and 
mapping. The method showed good accuracy: more than 
95.6% of the spectra were filtered without missing any cor-
rect sequence. The filtration percentage reached 99.6% with 
minor loss of correct sequences (0.19%). The speed was in-
creased 111 times in the case of 99.6% filtration, represen-
ting a remarkable speeding-up capability of this method. 
Further, the authors demonstrated additional applications 
for this method, such as accurate and efficient clustering of 
the MS/MS spectra (Dutta and Chen 2007). 

 
4. SkipE 
 
The SkipE method was developed to identify novel alterna-
tive splicing isoforms through identifying exon-skipping 
events, which are considered the most common form of al-
ternative splicing. An exon-skipping event can be identified 
from peptides spanning the exon-exon junction of non-con-
tiguous exons. The SkipE database was constructed through 
the creation of a list of all theoretical non-contiguous junc-
tion peptides from the human genome database based on the 
full-length transcript. Only the junction peptides were kept, 
while the preceding and following sequences were removed 
based on the last and first tryptic site upstream and down-
stream from the junction, respectively. Finally, duplications 
were removed, leaving only ~300,000 peptides, which is a 
suitable size for searching with standard methods. The 
MS/MS data of human platelets was used against the SkipE 
database and the International Protein Index Database 
(IPI.Human) (Kersey et al. 2004), yielding 89 genes with 
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alternative splicing isoforms; many of them were confirmed 
at the mRNA level using RT-PCR and sequencing of the 
products (Power et al. 2009). 

 
5. Exon-exon junction database 
 
Mo et al. (2008) presented the Exon-Exon junction method, 
which is similar to the SkipE method, to identify peptides 
spanning the exon-exon junctions. The identification of 
these peptides from the genome database is not possible, 
since the exon-exon junctions are separated by introns. 
Thus, Mo et al. (2008) used the Ensemble core database 
and its APIs and wrote scripts using perl, Bioperl and 
mySQL to construct a database of all putative exon-exon 
junction proteins covering all possible combinations of 
exons for each gene. The duplications and the previously 
described exon-exon junction events were removed, resul-
ting in a final database with 873,024 entries and total size of 
132 Mb. Using the MS/MS dataset of the human liver and 
two search engines (SEQUEST and X!Tandem), they were 
able to identify 488 non-redundant putative exon-skipping 
events (Mo et al. 2008). 

 
Database splitting 
 
A simple and straight forward approach that allows sear-
ching the whole of large databases, including all features 
without reduction, is the database splitting approach. In this 
approach, a large database, such as a six-frame translation 
of the human genome database, is simply split into a set of 
smaller databases (e.g. one database per chromosome), re-
sulting in 24 separate databases in the case of the human 
genome, for instance. Then, the MS/MS data is searched 
against each database separately. Clearly, this consumes 
more time and resources. However, it is the only method 
that allows searching large dataset of peptide spectra against 
the whole of a large-sized database with reasonable compu-
tational resources and without prior reduction of the data-
base or interpretation of the MS/MS spectra. Database split-
ting has been used to find novel genomic features in several 
proteogenomic projects. 

To identify novel ORFs, Fermin et al. (2006) developed 
an approach based on creating a library of all possible 
ORFs in the human genome. The sequences of the ORFs in 
the library were obtained through complete six-frame trans-
lation of each chromosome of the human genome. The final 
library contained 217,305,234 putative ORFs, increasing 
the database size by an order of magnitude. Although the 
authors used a cluster of 106 nodes to perform X!Tandem 
searches, it was not possible to use it as one unit, especially 
after adding a decoy version of the database to calculate the 
false-positive rate (FPR). Therefore, they split the database 
per chromosome, creating 24 databases, and searched them 
one by one using the MS/MS data from the Human Prote-
ome Organization Plasma Proteome Project (HUPO PPP). 
Using this approach, followed by several steps of analysis 
and confirmation, they were able to identify 282 significant 
ORFs using 2,314 peptides, of which 627 were novel (Fer-
min et al. 2006). 

In a recent project, Bitton et al. (2010) compared prote-
ome data obtained from human breast epithelial cell lines 
against the six-frame translation of the human genome data-
base with a concatenated reverse database for false positive 
rate (FPR) calculation. Since the decoy database is equiva-
lent in size to the target database (Elias and Gygi 2007), it 
was again not possible to search the whole database as one 
unit. Therefore, they used an approach similar to the method 
described by Fermin et al. (2006). The database was split by 
chromosome into 23 databases, each of which contains 
target and decoy versions, and the search was performed 
against each database separately. In this work, Bitton et al. 
were able to identify 346 putative novel peptides; of which 
two correspond to novel isoforms, while the remainder cor-
respond to novel loci, and many of them were confirmed 
using several methods (Bitton et al. 2010). 

METHODS BASED ON NEW SEARCH 
ALGORITHMS 
 
Methods in this category are based on developing novel 
database-searching algorithms that speed up the search pro-
cess. 

 
GENQUEST 
 
Sevinsky et al. (2008) developed the GENQUEST method, 
which made searching the human whole genome possible 
with common desktop computers. In GENQUEST, six-
frame translation and in silico trypsin digestion for the 
whole genome database are performed and the molecular 
weight (MW) and the peptide isoelectric focusing value (pI) 
are calculated for each peptide (forward and reverse) with a 
MW between 800 and 3000. The resultant library of 
peptides was called the human genome peptide database 
(HGPdb). Next, to make the search possible with common 
desktop computers, narrow-range peptide fasta files were 
created for SEQUEST search by sorting the peptides into 
files based on the pI, with each fasta file representing 0.01 
pI. When the pI range is determined, the files in this range 
are concatenated, indexed (using BioWorks Browser – 
Thermo Fisher Scientific) and searched. This significantly 
reduces the size of the database to be searched. Using 
GENQUEST, almost all exonic peptides identified from the 
protein database were identified from the genome database 
and 540 peptides were uniquely identified from the genome 
database. The whole analysis was done in a common desk-
top computer with a Pentium 4 2.8 GHz processor and 3 
GB RAM (Sevinsky et al. 2008). 

 
InsPecT 
 
Identification of posttranslational modifications (PTMs) is 
crucial for understanding cellular regulation processes. 
However, PTMs identification from databases that contain 
all possible mutations (modifications) using the normal 
search tools is computationally demanding. In order to ac-
curately identify posttranslational modifications with rea-
sonable cost, Tanner et al. (2005) developed InsPecT. 
InsPecT identifies PTMs from MS/MS data and genomic 
databases using database filters. The basic principle in 
InsPecT is to filter the databases aggressively and ac-
curately, using the given spectrum and to return a small 
fraction that contains the candidate peptides able to produce 
the given spectrum with high probability. This allows 
applying more sophisticated and intensive analysis to the 
remaining fraction of the databases by considering a rich set 
of PTMs for each peptide. Further, the reduction of the 
number of candidates reduces the probability of false posi-
tives and high score achievement by chance. Four datasets 
were used to evaluate the performance of InsPecT, resulting 
in the identification of number of novel PTMs in the em-
ployed datasets, including phosphopeptides. In addition, 
InsPecT was two orders of magnitude faster than 
SEQUEST and significantly faster than X!Tandem on a 
complex mixture (Tanner et al. 2005). 

 
ABLCP 
 
Zhou et al. (2010) presented the new Algorithm Based on 
Longest Common Prefix (ABLCP) method for speeding up 
database search by efficient organization of the database. 
ABLCP uses an on-line digestion method to create an index 
of all peptides, then removes duplicates, and uses methods 
to ensure that no candidate peptides are missed. Thus, the 
identification time was noticeably improved using ABLCP, 
compared with methods that use peptide indexing, while 
accuracy was not affected. Further, the time and disk space 
required for index creation were less than those required by 
pFind (Wang et al. 2007) (pFind was chosen because it had 
been proven to have better performance than SEQUEST, 
Mascot and X!Tandem (Li et al. 2010)) in the case of a nor-
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mal database. ABLCP performance was compared with 
other approaches that use either peptide indexing or no spe-
cial data structures, and all the analysis was done using 
affordable computational resources (desktop PC with 2 
CPUs each with 2 1.6 GHz cores and 4 GB RAM). How-
ever, ABLCP is implemented on pFind and designed to 
work with protein sequence databases, not genomic se-
quence databases (Zhou et al. 2010). 

 
PepSplice 
 
The PepSplice search algorithm, presented by Roos et al. 
(2007), uses cache-optimization and restriction of combined 
search spaces to speed up large-scale peptide identification 
tasks. The algorithm is a cache-aware algorithm, since it 
was designed to take into account the different storage levels 
with different speed and size (CPU, RAM, hard disk…). 
The search spaces that can be combined and searched using 
PepSplice are the non-tryptic peptides, whole genome, 
several posttranslational modifications, un-annotated point 
mutations and un-annotated splice sites. However, 
PepSplice allows restricting the number of variations that 
can co-occur per peptide. Then, the search is carried out by 
the CPU as a single job, and the final result merges all 
results from all combined search spaces. The cache-optimi-
zation and restriction of combined search spaces improved 
the search speed to reach the theoretical hardware limit. The 
authors demonstrated outstanding performance of PepSplice 
by searching over 1.4 million spectra obtained from Arabi-
dopsis culture cell against the Arabidopsis protein database 
and the Arabidopsis genome database, considering a variety 
of search spaces simultaneously (such as semi- and non-
tryptic peptides, various posttranslational modifications, 
point mutations and a huge number of potential splice sites). 
Interestingly, the search was carried out with single CPU 
with a throughput of 8 spectra per second, a speed that ex-
ceeds the measurement speed of most recent mass spec-
trometers (for instance, the throughput of the current LTQ 
instruments is 2 spectra per second) (Roos et al. 2007). 

 
Integrating the peptide sequences with the human 
genome 
 
Desiere et al. (2005) described a pipeline for mapping pep-
tides obtained from large-scale MS/MS analysis to the 
genome and built an expandable resource for integrating 
peptide data obtained from different proteomics experi-
ments without searching the genome database. This strategy 
depends on searching several protein databases to obtain the 
peptide sequences correspond to the peptide spectra, then 
using several computational steps to map these peptides to 
the genome to confirm the expression of the proteins and 
the corresponding genes. They applied this pipeline to the 
human and Drosophila melanogaster genomes, resulting in 
validation rates of 27% (9,747 proteins and 3,107 genes) 
and 14% (6,423 proteins and 1,876 genes) in human and 
Drosophila, respectively (Desiere et al. 2005). 

 
HYBRID METHODS 
 
Methods in this category combine spectral de novo interpre-
tation and database searching approaches in order to retain 
the advantages of both approaches, while overcoming the 
limitations. 

 
PepLine 
 
Ferro et al. (2008) presented a data processing pipeline, 
PepLine, which automates the process of mapping large-
scale MS/MS spectra datasets derived from tryptic peptides 
to the genomic sequence without preprocessing of the data-
base, allowing the identification of novel genomic features 
and refinement of the genome annotation. However, since 
direct mapping to the genome requires identification of the 
peptide sequence corresponds to the spectrum, a process 

that is computationally expensive with large-scale datasets 
if database search methods are employed, PepLine uses 
peptide sequence tags (PSTs) to perform spectrum inter-
pretation. The data is processed using three sequential mod-
ules optimized for working with large-scale datasets. The 
first module, Taggor, interprets the MS/MS spectra and 
generates the PSTs, the second module, PMMatch, maps the 
PSTs to the genome sequence, while the third module, 
PMClust, clusters closely located genomic hits. The pipe-
line performance was tested against database searching 
programs using a standard proteins dataset and an Arabi-
dopsis thaliana envelop chloroplast sample, and it shows 
outstanding performance with large-scale datasets and gen-
omes. Further, it allows for accurate identification of the 
exon-intron boundaries, which make it suitable for eukary-
otic genomes. However, it should be noted that the current 
Taggor module of PepLine is specially designed to han-
dle quadrupole time-of-flight (QTOF) MS/MS data. Never-
theless, the PepLine modularity makes it possible to use 
another program instead of Taggor when using MS/MS 
from an ion-trap-like instrument, then the analysis can be 
continued using PepLine (Ferro et al. 2008). 

 
Lookup Peaks 
 
Lookup Peaks is another hybrid method that uses partial de 
novo analysis then database search. It applies a small de 
novo interpretation to the spectrum to identify the b- and y-
ion peaks (the lookup peaks). The lookup peaks are used to 
extract candidate peptides from the database. The limited 
number of candidate peptides, compared with the total num-
ber of peptides in the whole database, makes the identi-
fication computationally affordable. Further, the authors 
developed a software tool, ByOnic, that implements the 
Lookup Peaks method. The method performance and sen-
sitivity were assessed using several datasets and perfor-
mance was better than that of sequence tagging methods, 
Mascot, SEQUEST and X!Tandem, at both the peptide and 
protein levels. ByOnic was able to find low-concentration 
spiked human peptides in a mouse blood plasma sample, 
while these peptides were missed by other tools (Bern et al. 
2007). 

 
Spectral Dictionaries 
 
Spectral Dictionaries is a hybrid method that combines de 
novo interpretation of the MS/MS spectrum and database 
search, but in a novel way. Hybrid methods, in general, are 
based on the sequence tagging approach that was proposed 
in 1994 by Mann and Wilm (1994). In these methods, small 
fractions of the peptide sequence (usually limited to a 
length of three) are inferred from the spectrum and these 
tags are later used to search the database. Spectral Dic-
tionaries goes a step further by generating all possible full-
length peptide reconstructs and insures that one of the gene-
rated reconstructs is correct. Although the idea is not new 
(Taylor and Johnson 1997), it was implemented once with a 
software tool based on a slow searching approach (Alves 
and Yu 2005) that limited its usability with large-scale data-
sets. Kim et al. presented a new implementation with supe-
rior performance when using datasets of over 20,000 pep-
tides. The new implementation makes searching the six-
frame translation of the human genome possible with a 
large-scale proteome dataset for proteogenomics, and it can 
also be modified to search for mutations and polymorphisms 
by using error-tolerant pattern matching when searching the 
database (Kim et al. 2009). 

 
Genomic Peptide Finder (GPF) 
 
As mentioned in the previous section, exon-exon junction 
peptides, also known as intron-split peptides, cannot be 
identified from the genome database, though it has been 
estimated that these peptides represent 20~25% of the total 
tryptic peptides deduced from the genome (Choudhary et al. 
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2001). These peptides help in the correct determination of 
the exon-intron boundaries and, consequently, in accurate 
annotation of the protein-coding regions. Therefore, methods 
like SkipE (Power et al. 2009) and the exon-exon junction 
database (Mo et al. 2008) were developed to identify such 
peptides using in silico intron-split peptides databases. 
However, Allmer et al. (2004) presented a novel method to 
identify intron-split peptides directly from the genome data-
base by developing the GenomicPeptideFinder (GPF) algo-
rithm. GPF uses de novo amino acid sequence prediction to 
infer the peptide sequence information together with the 
molecular weight (MW) of the precursor ion. A short frag-
ment of the predicted peptide sequence is aligned with the 
six-frame translation of the genome and the MW of the 
precursor ion is used to assemble the full peptide using the 
sequence as a matrix. To speed up the search process, GPF 
performs two types of search, one using a long stretch of 
the peptide sequence (five amino acids) and the second 
using a shorter stretch (three amino acids). However, the 
second search is invoked only if the first resulted in mat-
ches with the genomic data. Next, GPF triggers four se-
quential processes aiming to identify peptides that match 
the search criteria and the resultant peptides are saved in a 
database of potential intron-split peptides. Finally, normal 
peptide identification tools such as Mascot (Perkins et al. 
1999) or SEQUEST (Eng et al 1994) can be used to search 
the original spectra against the intron-split peptides data-
base for the actual identification of the correct peptides 
(Allmer et al. 2004). 

 
Fast spectra profile comparison 
 
Aiming to speed up peptide sequence identification from 
large databases, Liu et al. (2005) proposed the Fast Spectra 
Profile Comparison method. Like GPF, this method speeds 
up the search by reducing the number of peptides to be 
searched with normal peptide identification tools such as 
Mascot or SEQUEST. However, the main principle here is 
to perform coarse comparison between the experimental 
spectrum and the theoretical spectra in order to exclude 
peptides with spectra showing little similarity to the experi-
mental spectra. The peptides that pass the comparison are 
subjected to preliminary evaluation and finally sorted in 
ascending order and saved to a database of candidate pep-
tides. The next step is similar to GPF, where Mascot or 
SEQUEST is used to search the constructed database, 
which is significantly smaller than the original. For the 
evaluation of the method, three datasets from three different 
sources, with different accuracy, and obtained with different 
instruments were used. The positive peptides (correct mat-
ches) of each dataset were already known. Applying the 
methods to the three datasets, the positive peptides were 
ranked in the top 10%, limiting the second stage, Mascot/ 
SEQUEST search, to a very small number of candidates. 
Further, the identification time was two times faster, on ave-
rage, than the control (Liu et al. 2005). 

 
METHODS INVOLVING COMPUTER HARDWARE 
 
Methods in this section use an extraordinary approach to 
speed up the search process, such as embedding the search 
program in the computer hardware. Such approaches im-
prove performance significantly, but have the drawback of 
limiting the usability of the method due to the requirement 
of particular hardware or infrastructure, for instance. 

 
SEQUEST sorcerer 
 
A unique speeding-up approach was implemented in Sor-
cerer. Sorcerer is an implementation of SEQUEST in firm-
ware (embedded software that runs directly on the hard-
ware) with a web-based interface that is similar to the Mas-
cot interface. This makes the search extremely fast com-
pared with other search programs, including the normal 
SEQUEST itself. Further, it reduces the required infor-

matics skills, administrative tasks and power consumption. 
However, it suffers from the major technical limitation with 
large databases that requires consideration of six-frame 
translation, such as EST and genomic sequence databases, 
since Sorcerer uses indexed databases (Kapp and Schutz 
2007). Recently, Sorcerer became available in two versions, 
Sorcerer 2 and Sorcerer Enterprise. Sorcerer 2 is designed 
for laboratories with frequent high-throughput requirement, 
and can handle data from modern instruments at up to 
30,000 spectra/hour. Sorcerer Enterprise is designed for 
laboratories with intensive high-throughput needs, e.g., 
more than one high-throughput mass spectrometer or multi-
ple core facilities. The Enterprise version is 2.5-fold faster 
than the normal version and can even scale up an additional 
10 times [www.sagenresearch.com]. 

 
SPECTRUM REDUCTION METHOD 
 
Spectrum reduction is a well known approach that is opti-
onally used by several search engines to reduce the number 
of spectra to be processed. In this approach, a quality thres-
hold can be set to exclude all spectra below it, since these 
spectra are considered of low quality (Kapp and Schutz 
2007). We can call this type of reduction positive reduction, 
as it reduces the effort that could be wasted in processing 
such low-quality spectra. Therefore, any reduction of high-
quality spectra can be considered negative reduction. Al-
though positive reduction reduces the number of spectra to 
be processed, the number of remaining spectra is still high, 
especially when using recent high-accuracy mass spectro-
meters. The method presented in this category proposes a 
novel approach to reduce the number of spectra, while 
avoiding negative reduction. 

 
Mass Spectrum Sequential Subtraction (MSSS) 
 
Mass Spectrum Sequential Subtraction (MSSS) is a bio-
informatics method developed especially to facilitate the 
comparison of large-scale MS/MS data with large databases. 
MSSS uses a novel subtraction method to identify large 
numbers of spectra from sequence databases within a rea-
sonable time and with affordable computational demands. 
The basic idea of MSSS is to compare the whole large-scale 
data with a reference database, usually a protein database, 
then to subtract all spectra corresponding to the identified 
peptides and to create new files containing the unidentified 
spectra. Next, the new files can be compared with the large 
database or with another reference database to subtract 
more spectra. With the described subtraction approach, 
MSSS reduces the number of high-quality spectra to be 
processed while avoiding negative reduction. This approach 
should reduce the search time and save computational re-
sources. In addition, it can be used to find modifications 
and mutations by using databases of normal proteins and 
mutated or modified proteins, by performing subtraction 
after searching the database of normal proteins. 

In a recent preliminary study, MSSS was used to iden-
tify modifications and disease-related mutations using four 
databases from normal individuals (protein, cDNA, trans-
cript and genome databases) and one cancer patient data-
base to identify a list of candidate onco-peptides, including 
phosphopeptides (Helmy et al. 2010). This tool promises to 
have further applications in cancer, such as identifying can-
cer-related mutations, new drug targets and new biomarkers. 
 
CONCLUSION 
 
Proteogenomics is an emerging research approach that uti-
lizes current advances in proteomics and genomics, as well 
as creating its own tools and technologies. Among several 
challenges facing proteogenomics, the process of com-
paring large-scale MS/MS data with large databases remains 
the major obstacle to full utilization of recent high-through-
put proteomics techniques. Various methods have been 
developed to facilitate this comparison, including deve-

83



Mass spectrometry-based peptide identification in proteogenomics. Helmy et al. 

 

loping new algorithms, methods for reducing the database 
size or reducing the number of spectra to be processed, and 
methods involving computer hardware to speed up the 
search process. However, despite these great efforts, most 
of the developed methods still suffer from problems such as 
having been tailored to solve certain problem(s), to work 
with data from certain instruments, to be applicable only 
with protein sequence databases, or to require special hard-
ware infrastructure. Further, some methods are implemen-
ted to work with particular search engine(s), while others 
have not yet been implemented in any publicly available 
commercial or open-source tool. Therefore, there is still 
room for new methods, or improvements of the current 
methods, that would be more generalized, flexible and easy 
to integrate into existing data-processing workflow. 
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