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ABSTRACT 
Minerals have a diversified role in medicinal plant metabolism. Severity or scarcity of these causes multifarious effects in plant 
metabolism. Each and every aspect of plant biochemistry, physiology, anatomy, etc. is affected due to mineral nutrient composition of 
soils. Medicinal plants inherit resistance due to biosynthesis of bioactive substances (secondary metabolites) against the various types of 
diseases caused due to fungus, bacteria, viruses, mycoplasmas, insects and pests. The concentration of these minerals of both group i.e. 
activators or inhibitors present in the soil play a vital role in secondary plant metabolism. Minerals also play a major role in the 
reproduction of these medicinally important plants. Bioactive molecules of medical relevancy such as alkaloids, flavonoids, lignans, lipids, 
carbohydrates, resins, glycosides, phenolic compounds, volatile oils, vitamins, tannins etc. produced through various biosynthetic 
pathways of plants are a boon to urban, hilly and remote population of each nation. However, soils with different compositions of mineral 
elements adversely influence the metabolic activities of such valuable medicinal plants. Various physiological activities are governed 
through important mineral elements present in soils from where these are transferred to area where their need arises. So, accumulation and 
biosynthesis of these bioactive molecules in a plant system are widely dependent on the availability of mineral elements in the soil. 
Different developmental stages of the medicinal plants need supplementation of different macro- and micro- elements during its various 
growth and biosynthesis steps. This review deals with regulatory role of various mineral elements in each biological activities of different 
medicinal plants viz. Papaver, Catharanthus, Withania, etc. 
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INTRODUCTION 
 
Minerals have a profound effect on the metabolic activities 
in medicinal and aromatic plants (MAPs ) that represent a 
consistent part of the natural biodiversity endowment of 

many nations of the world (Okigbo et al. 2008). The role 
and contributions of various mineral elements can be 
revealed through their regulatory role played in metabolism 
of medicinal and aromatic plants. Innumerable substances 
of immense importance are synthesized such as sugars, 
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starch, cellulose, acids, lignin, tannins, amino acids, pro-
teins, amides, etc during metabolic processes in plants (Soe-
tan et al. 2010). Most of the medicinal plants produce sec-
ondary metabolites as for instance morphine in Papaver, 
withanolides in Withania, vincristine and vinblastine in 
Catharanthus, etc. which are a boon to human health. The 
utilization of MAPs as a source of fuel, building material, 
food, fodder and fibre, in every country has, however, led to 
a reappearance of natural product-based industries and 
pharmaceutical products. This had been spurred by the 
interests of the developed countries for traditional medicine 
and natural products (Okigbo et al. 2008). Today, there is 
an increasing requirement for plant-based medicines, health 
products, pharmaceuticals, food supplements, cosmetics, etc. 
in the international market. The international market of 
medicinal plants is over 60 billion US$ per year, which is 
growing at the rate of 7% per annum. The present export of 
herbal raw materials and medicines from India is about 100-
114 million US$ per year approximately. India is one of the 
major exporter of crude drugs among six developed coun-
tries viz. USA, Germany, France, Switzerland, U.K. and 
Japan, and shares 75-80% of the total export market 
between them (Chatterjee 2001). Global market size for 
herbal and medicinal plants is projected to reach US$ 5 
trillion by 2050 (www.smeworld.org 2010). 

During plant growth, there are continuous processes of 
building up of complex compounds of carbon (C) and nitro-
gen (N) and their breakdown into simple substances, in 
which water (H2O) and oxygen (O) are intimately con-
cerned. The chief processes involved in plant metabolism 
viz. absorption, C assimilation, photosynthesis, formation 
of protoplast, transpiration, respiration, translocation, sto-
rage, etc. are regulated by micro- and macro-elements 
readily available in different forms in the soil (Soetan et al. 
2010). Supplementing nutrient requirement of medicinal 
crops through organic manures plays a key role in sus-
taining soil fertility and crop productivity (Patra et al. 2000). 
With growth cycles, there are certain well defined chemical 
cycles of nutrient elements and their elaborated products in 
the leaves, stems and roots, etc. Even the presence of ade-
quate quantities of plant nutrients in the soil does not 
guarantee its absorption by the plant roots. For example, the 
latter condition is found in poorly aerated soils, where lack 
of O2 near the roots may prevent them from being actively 
absorbed by the roots (Welch and Graham 2004; Soetan et 
al. 2010). 

It is well known that certain elements are necessary for 
the healthy growth and proper functioning of plant meta-
bolism (Ozcan 2003). They are sometimes referred to as 
essential elements; some of them are needed relatively in 
larger quantities and while others in very small amounts. 
Thus, the former elements are referred to "major" elements 
and the latter ones as "minor" or "trace" elements or as 
“micro-elements” (Eruvbetine 2003). The terms "major" 
and "minor" do not refer to the relative importance of the 
functions of elements in plant growth, and for this reason 
the term "trace" element is preferable for the latter class. In 
addition, there are certain other elements, such as sodium 
(Na), chlorine (Cl) and silicon (Si), which produce bene-
ficial effects on the growth of certain plants but have not so 
far been shown to be absolutely essential to growth. The 
element aluminium (Al) is of general occurrence in plants, 
but it seems to be without direct nutritional value, although 
aluminum sulfate is used, because of its acidifying proper-
ties, to change the color of hydrangeas growing on alkaline 
soils from pink to blue. Al may exert indirect influences on 
nutritional processes as well (Mossor–Pietraszewska 2001). 
Other elements often occur in plants but they are not known 
to serve any useful function and are frequently referred to 
as poisons or toxins to the plant. The nutrient elements can 
only be absorbed by plants when present in certain definite 
forms, as for example N in nitrates and ammonium salts, 
phosphorus (P) in phosphates, calcium (Ca), magnesium 
(Mg) and potassium (K) in their salts as sulfates or chlo-
rides, sulphur (S) in sulphates, iron (Fe) in ferrous or ferric 

salts (more readily from ferrous salts), manganese (Mn) in 
magnanimous salts, boron (B) in borates, copper (Cu) and 
zinc (Zn) in their salts, and molybdenum (Mo) in molyb-
dates (Soetan et al. 2010; Mazid et al. 2011). 

Among the various macro-elements required for plant 
metabolism, N is a major constituent of the most important 
substances found in plants. N constitutes 40 to 50% of the 
dry matter of protoplasm, proteins, chlorophyll, amino acids, 
amides and alkaloids (Oaks 1994; Lea 1997; Fuentes et al. 
2001). P is closely concerned with the vital growth pro-
cesses in plants. It is a major constituent of nucleic acid and 
nuclei (Soetan et al. 2010). In seeds, it is related to meta-
bolism of fats. It is also required in root development and 
ripening of seeds and fruits. Ca and Mg are the constituents 
of cell wall and chlorophyll; and act as carrier of P element 
(Belakbir et al. 1998; Olaiya 2006). K is required in the 
formation of carbohydrates and proteins. It is used in regu-
lation of H2O relations within the plant cell and H2O loss by 
plants through transpiration. Besides, it is a catalyst and 
condensing agent of complex substances and an accelerator 
of enzyme action. S is a constituent of proteins and is also 
connected with chlorophyll formation (Hell 1997; Soetan et 
al. 2010; Waraich et al. 2011). 

Micro-elements, required for plant metabolism, include 
Fe, B, Zn, Cu, Si, nickel (Ni), cobalt (Co) and Cl. Fe and 
Mn are used for chlorophyll formation (Rouault 2005); B is 
used as a catalyst or reaction regulator (Bolaos et al. 2000; 
Olivares et al. 2011); Zn and Cu are used as catalysts and 
regulators (Aziz et al. 2010); Si is used in deposition of cell 
walls (Sacala 2009); Mo is used as a cofactor to enzymes 
important in building of amino acids (Kaiser et al. 2005); 
Ni is used for activation of urease in higher plants and 
activates several enzymes involved in a plant metabolism. It 
is also a substitute element for Zn and Fe, which act as 
cofactors in several enzymes in the lower plants. Co has 
proven beneficial in some plants such as legumes, where it 
is required for N fixation (Aziz et al. 2007). Vanadium (V) 
is required by some plants at very low concentrations. Na is 
used as replacer of K for regulation of stomatal opening and 
closing (Pardo and Quintero 2002). The evidence of the role 
of Cl in plants is somewhat contradictory and no general 
statement can be made (Runguphan et al. 2010). In tobacco, 
it has been shown to increase H2O content of the tissues and 
affect carbohydrate metabolism, leading to an accumulation 
of starch in the leaves. The element remains present in 
plants as chloride and is totally soluble. Toxic effects of 
metals in plants may be produced both by essential and 
non-essential elements. The major nutrients are less toxic 
than the trace elements. Indeed, for the major nutrients, 
there exists a fair safety margin for excess or "luxury" con-
sumption, but for the trace elements the margin is very 
narrow. Similar conditions exist in relation to non-essential 
elements; some plants tolerate fairly large amounts of 
elements such as Na or Cl, but are injured by relatively 
small amounts of elements like arsenic (As) or chromium 
(Cr) (Epstein and Bloom 2004). Thus, the present review 
explains regulatory role of each essential and non-essential 
mineral element in the common metabolic activities like 
photosynthesis, respiration, ion uptake, protein synthesis, 
alkaloid biosynthesis etc., occurring in medicinal plants 
with the emphasis given to selected medicinal plants such 
as Papaver somniferum, Catharanthus roseus, Withania 
somnifera, Nicotiana, etc. 
 
REGULATORY ROLE OF MINERAL ELEMENTS IN 
PHOTOSYNTHESIS AND RESPIRATION WITH 
REGARDS TO MEDICINAL AND AROMATIC 
PLANTS 
 
One of the most fundamental and least understood areas of 
plant physiology and biochemistry is the relationship 
between quantities of essential mineral nutrient elements 
and metabolic changes occurring in plants. A living plant is 
a complex biological system composed of several chemical 
constituents. C, hydrogen (H), O, S and N are the major 
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constituents of organic material, which are also involved in 
enzymatic processes. C and O have a significant role as 
components of carboxylic group. H and O are useful in oxi-
dation-reduction processes and N is used in biological nitro-
gen fixation (Salisbury and Ross 2002). 
 
Role of macro-elements 
 
1. Carbon, hydrogen and oxygen 
 
The assimilation of C in form of carbon dioxide (CO2) takes 
place in plants and the process is called carboxylation, 
which is a basic mechanism by which CO2 is fixed in 
photosynthesis. The first CO2 acceptor is RuBP (Ribulose 
bisphosphate), a three C compound in C3 plants. This is one 
of the important reactions of Calvin Cycle (Soetan et al. 
2010; Murchie and Niyogi 2011). In C4 plants, CO2 accep-
tor is phosphoenolpyruvate (PEP), a four C compound (Ed-
wards et al. 2010; Gowik and Westhoff 2011). The reverse 
process by which CO2 is liberated is known as decarboxy-
lation; for example, the release of CO2 from malic acid to 
form pyruvic acid is due to a decarboxylation reaction. The 
conversion of light energy into chemical energy is closely 
related to the conversion of CO2 into organic compounds 
(Cruz et al. 2005). 

light energy 
6 CO2 + 6 H2O         C6H12O6  + 6 O2 

 
In modern terminology, the process of absorbing elec-

tromagnetic radiations by the pigment system and its con-
version into chemical energy which can be made available 
for growth in a particular environment is termed as photo-
synthesis (Pottosin et al. 2005). In higher plants, light ab-
sorption is brought about by chlorophyll and carotenoids. 
Photosynthesis begins with the absorption of light by these 
pigments, which induces an electron flow that results in 
conversion of light energy into chemical energy. In higher 
plants, two photosystems are responsible for such energy 
conversion; photosystem I and II (Cruz et al. 2005). Each of 
these photosynthetic units consists of about 400 chlorophyll 
molecules along with additional pigments such as carote-
noids. In photosystem I (PS-I) a special chlorophyll mole-
cule is involved known as pigment 700 (P-700) (Yokthong-
wattana and Melis 2006; Murchie and Niyogi 2011). 
 
Energy + P-700         (P-700) 

+ e- 
 
This is the basic process that initiates electron flow. The 

electron ejected from P-700, thus, moves against an electri-
cal gradient. Photosystem II (PS-II) functions in an analo-
gous way to PS-I. In PS-II, the electron emitter is a chloro-
phyll molecule P-682 (Cruz et al. 2005; Kramer and Evans 
2011). 

e- 
(P-682)         (Q) 

 
These two photosystems function in series and consti-

tute the components of electron transport pathway, trans-
ferring the electrons from H2O to (Nicotinamide adenine 
dinucleotide phosphate) NADP+. Thus, H2O being the ulti-
mate electron donor and NADP+ the electron acceptor in the 
overall process. PS-II is closely associated with splitting of 
H2O molecule, which serves as electron donor (Shikanai 
2007). 

 
2H2O         4H+ + 4e- + O2 

 
Photolysis of H2O i.e. splitting of H2O molecule makes 

use of Mg (Mg2+) and Cl (Cl-1) ions. The whole process 
does not seem to be legitimate to describe here in details. 
Plastocyanin (a Cu containing acidic protein) and ferre-
doxin (Fe-S protein) plays critical role in this electron trans-
port system (Diner and Babcock 1996; Aubry et al. 2011). 
In photosynthetic energy conversion, light induces an elec-
tron flow that provides sufficient energy for the synthesis of 

adenosine triphosphate (ATP) and reduction of NADP+. In 
the whole process, another Cu containing compound plasto-
quinone and an Fe containing compound cytochrome play 
vital roles (Sacksteder et al. 2000). 

The next major metabolic process being the cellular res-
piration (oxidative metabolism) which is a set of metabolic 
processes and reactions are executed within the cell of an 
organism in order to convert biochemical energy, derived 
from the nutrients, to ATP (Soetan et al. 2010). The ATP is a 
major source of energy for cellular reactions taking place in 
all form of life. There are two types of cellular respiration: 
aerobic and anaerobic cellular respiration. Both animals as 
well as plants, execute cellular respiration to produce 
energy. They use nutrients such as glucose, amino acids and 
fatty acids to produce energy. The common oxidizing agent 
in this process is molecular O. Glycolysis being the first 
step of cellular respiration, is the process whereby the glu-
cose is chemically modified to pyruvate. This process 
occurs in cytosol of the cell and is carried out in the absence 
of O. During this process, energy is released from glucose 
compounds in the form of 2 NADH molecules and 2 ATP 
molecules. Pyruvate decarboxylation is the second stage of 
cellular respiration. In this process, pyruvate is decarboxy-
lated and added to coenzyme A (CoA) in order to form 
acetyl CoA. It is an important stage in the cellular respira-
tion process, which forms a link between metabolic path-
ways of glycolysis and the Kreb’s cycle. 

The Kreb’s cycle comprises a series of steps, which 
oxidize aceytl CoA molecule. Unlike glycolysis, the Kreb’s 
cycle requires O for its functioning and is catalyzed by vari-
ous series of enzymes. Two complete turns of Kreb’s cycle 
produces 4 CO2 molecules, 2 ATP molecules, 6 NADH2 and 
2 Flavine adenine dinucleotide (FADH2) molecules (Soetan 
et al. 2010). The final stage of cellular respiration is elec-
tron transport chain (ETC), which produces the remaining 
32-34 ATPs. The ETC comprises of electron-carrying pro-
teins, present on the internal membrane of mitochondria. 
These proteins transfer electrons from one self to another. 
These electrons are finally added to O, which is reduced to 
form H2O. In this process, ATPs are produced by pmf, a 
source of potential energy created by the gradient that is 
formed when protons move across the biological membrane. 
Simply the ETC triggers a pH gradient through which ATP 
is produced by the process known as chemiosmosis. 

A short-term exposure to CO2 enhanced the rate of 
photosynthesis and vice versa, while an intermediary expo-
sure of CO2 had variable effect on the rate of photosynthesis 
in C3 plants (Makino and Mae 1999). The suppression of 
photosynthesis by CO2 enrichment is always associated 
with decreases in leaf N and Rubisco contents. These de-
creases are not due to dilution of N caused by a relative 
increase in the plant biomass, but occur as a result of de-
crease in N allocation to leaves at the level of whole plant, 
and the decrease in Rubisco content is not selective. Ac-
cumulation of carbohydrates in the leaves may lead to the 
repression of photosynthetic gene expression. Besides, the 
excess starch hinders the CO2 diffusion through the leaves. 
In Papaver setigerum, increasing CO2 concentration (300, 
400, 500, 600 μmol mol-1) had positive effect on various 
morphological traits such as number of capsules, capsule 
weight and latex-yield, with an increase of 3.6, 3.0 and 3.7 
times, respectively on per plant basis. The secondary meta-
bolic products also responded positively to CO2 enrichment. 
The concentration of alkaloids morphine, codeine, narcotine 
and papaverine also increased in response to enhancement 
of atmospheric CO2. The concentration of major alkaloid i.e. 
morphine was significantly increased by 10.4, 11.7, 12.9 
and 12.4%, respectively for each dose (300, 400, 500 and 
600 �mol mol�1) of CO2 (Ziska et al. 2008). Similarly, there 
was a positive effect of increasing atmospheric concentra-
tion of CO2 (950-1050 μmol mol-1) on hypericin and pseudo-
hypericin content (14-fold increase) in Hypericum perfo-
ratum (Zobayed and Saxena 2004). There was an increase 
of 15% in digoxin yield per unit dry weight of plant and 
75% increase in plant dry weight production per unit land 
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area in Digitalis lanata by near-tripling of the air's CO2 con-
centration (Stuhlfauth and Fock 1990). Similarly, the con-
centration of atropine (11.9, 14.7, 18.9 mg) and scopola-
mine (12.9, 20.9, 25.4 mg, respectively) increased in 
Datura stramonium by varying CO2 concentrations (294, 
378 and 690 μmol mol-1) (Ziska et al. 2005). 

 
2. Nitrogen, phosphorus and potassium 
 
N is a main constituent of all the amino acids, proteins and 
coenzymes (Mazid et al. 2011; Murchie and Niyogi 2011). 
P occurs as phosphate or orthophosphate and to a minor 
extent as pyrophosphate. The process by which plants con-
vert inorganic N and S into organic forms is important for 
all the animals that depend on plants and microorganisms 
for their dietary source of organic N and S. N is one of the 
most widely distributed elements in nature that circulates in 
atmosphere, lithosphere and hydrosphere. Many factors are 
involved in the N-turnover, some of which are physio-
chemical and others biological. As such, dry plant material 
contains approximately 2 to 4% N. N is an indispensable 
elementary constituent of numerous organic compounds of 
general importance (amino acid, protein, nucleic acid, etc.). 
Both, NO3

- and NH4
+ forms of N can be taken up readily by 

plants from the soil and are metabolized thereafter in the 
plant cells. The rate of uptake of NO3

- is generally very high 
as plants require large amount of N for their growth and 
development. It is now established that in this uptake pro-
cess there are involved both influx and efflux components 
(Deane-Drummond and Glass 1983). Influx of NO3

- is an 
active process that involves the movement of NO3

- against 
the electrochemical gradient. The influx of NO3

- is also 
dependent on the concentration of NO3

- in the external 
medium (Lillo et al. 2004; Halkier and Gershenzon 2006; 
Soetan et al. 2010). 

N fixation is the most important process, in which the 
molecular N of the atmosphere from its inorganic form is 
fixed and converted into an organic form. Only prokaryotes 
are capable of assimilating molecular N. In addition, pro-
teolysis, ammonification, nitrification and denitrification 
are some other processes, which are controlled by microbial 
activity (Fuentes et al. 2001; Stitt et al. 2002). 
 
Soil organic N         RNH2 + CO2 + additional products 

+ energy 
 
RNH2 + H2O               NH3 + ROH + energy 

 
In opium poppy (Papaver somniferum L.) suitable form, 

supply and date of application of N fertilizers play a deci-
sive role in proper growth of poppy plants and its yield. The 
need of optimal supply of N for poppy plants begins shortly 
after seed germination and lasts till the stage of formation 
of the generative organs (Yadav et al. 1984; Pavlíková and 
Tlustoš 1994). Yadav et al. (1984) suggested that slow rel-
ease of N had a positive effect on the seed yield of opium 
poppy. Increase in the seed yield was due to enhancement in 
the process of photosynthesis, which was accelerated by the 
addition of N. In Catharanthus roseus, the growth of seed-
lings was improved by increasing N concentration in the 
pre-transplant fertilizer from 8 to 32 mM, when a peat-
based growing medium was used in the experiment (Van 
Iersel et al. 1998). N supply in C. roseus also stimulated K 
and P uptake and their translocation to the leaves (Lata and 
Sadowska 1996). N is a major limiting nutrient for plant 
growth; it is assimilated as NH4

+ by the converted action of 
glutamine synthase (GS1 and GS2) and glutamate synthase 
(GOGAT). In tobacco (Nicotiana tobacum), Fuentes et al. 
(2001) over expressed GS1 at the level of RNA and protein 
which increased the activity of GS upto six times in com-
parison to control plants which resulted in 70% higher shoot, 
100% greater root dry weight and 50% more leaf area than 
controls. They further concluded that manipulation in GS 
activity has the potential to maintain crop productivity 
while reducing nitrogen fertilization and the concomitant 

pollution. Omer (1998) and Omer et al. (2008) noticed that 
nitrogen fertilizer was effective in increasing essential oil of 
Origanum syriacum and Ocimum americanum, respectively. 

The organic forms of phosphate are the compounds in 
which, orthophosphate is esterified with hydroxyl group of 
sugars and alcohols or it is bound by a pyrophosphate bond 
to other phosphate group. A typical example of a phosphate 
ester is fructose-6-phosphate which is an intermediary meta-
bolite of glycolysis. Such organic phosphates are usually 
intermediary compounds of metabolism. Phosphate is also 
bound to lipophilic compounds particularly in phosphatidyl 
derivatives e.g. lecithin. Nagano and Ashihara (1993) rev-
ealed that the metabolic adaptation of inorganic phosphate 
(Pi) in respiratory pathways in plants was restricted to a 
limited level and that there were significant effects of long-
term Pi starvation on the activities of various enzymes 
related to respiratory metabolism. They found that only 
PEP-hydrolyzing enzyme and PEP carboxylase were in 
higher amounts in Pi-starved cells of C. roseus. Activities of 
other enzymes in the Pi-starved cells were lower than or 
similar to those of the control cells. Time-course studies 
indicated that PEP-hydrolyzing activity was inducible by 
starvation of Pi. However, fluctuations in the activity of PPi: 
fructose-6-phosphate i-phosphotransferase during starvation 
of Pi in levels was similar to those of phosphofructokinase 

and 6-phosphogluconate dehydrogenase (Williamson et al. 
2001). In Plantago ovata, increasing concentration of P 
plays a critical role in elevating total yield of the plant 
which was ascribed to the regulatory role of P in meta-
bolism (Tomar et al. 2010). Similarly, P deficiency preven-
ted nodulation or stopped nodule growth and also decreased 
photosynthesis in Trifolium repens (Almeida et al. 2000; 
Asatsuma et al. 2003). 

The most important compound in which phosphate 
groups are linked by pyrophosphate bond is ATP. The pyro-
phosphate bond is an energy rich bond, which on hydrolysis 
releases 30 Kj Mol-1 energy. The energy produced or rel-
eased in various metabolic processes is utilized in the syn-
thesis of pyrophosphate bond of ATP. In the form of ATP, 
the energy can be conveyed to various endergonic processes 
such as active ion uptake and synthesis of various organic 
compounds. In the whole process, there is usually an initial 
phosphorylation reaction which involves transfer of phos-
phoryl group from ATP to another compound. Another or-
ganic compound containing P is phytin which occurs 
mainly in seeds. Phytin is synthesized during seed forma-
tion in plants and occurs in the form of Ca and Mg salts of 
phytic acid in the seeds. Phytin is regarded as P reserve in 
the seeds. Phytic acid is the hexaphosphoric ester of inositol 
(Lott et al. 2000; Angel et al. 2002; Asatsuma et al. 2003; 
Pelig-Ba 2009). 

The role of K in increasing photosynthesis of Medicago 
sativa plant can differently be understood as K+ did not 
directly influence PS I or II; instead, it promoted the de 
novo synthesis of enzyme ribulose bisphosphate carboxy-
lase (Peoples and Koch 1979; Demmig and Gimmler 1983; 
Salim 2002). K decreased the diffusive resistance for CO2 
in mesophyll cells. The movement of K+ from the thylakoid 
spaces into the stroma of chloroplasts favors electron flow 
in the transport chain (Subbarao et al. 2003; Horie et al. 
2007; Haro et al. 2010). Depolarization of the plasma mem-
brane by K+ uptake has a direct influence on phloem load-
ing. Numerous researchers have shown that K+ enhances 
the translocation of photosynthates. K not only promotes 
translocation of newly synthesized photosynthates but also 
has a beneficial effect on the mobilization of stored material. 
Flores et al. (2000) emphasized that a decrease in K content 
of Catharanthus due to sodium chloride (NaCl) treatments 
may be due to the toxic effect of NaCl on plant growth or 
due to competition by other ions, which, in turn, exercised a 
regulatory control on K uptake. 

The decomposition of plant and animal materials leads 
to the production of organic compounds i.e. humic substan-
ces. To ameliorate soil acidity and improve soil structural 
stability, humic acid and their salts derived from coal and 
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other sources may provide a viable alternative to liming. 
Zaghloul et al. (2009) reported that the application of potas-
sium humate (0.0, 0.5, 1.0, 1.5, 2.0 and 2.5% K-humate) 
leads to increase oil content in Thuja orientalis. Said-Al et 
al. (2009) concluded that foliar application of K-humate 
promoted growth and possessed the best oil percentage in 
oregano plant. The increase in permeability of plant mem-
branes due to humate application results in improved growth 
of various groups of beneficial microorganisms, accelerate 
cell division, increased root growth and all plant organs for 
a number of horticultural crops and turf grasses, as well as, 
the growth of some trees (Russo and Berlyn 1990; Sanders 
et al. 1990; Poincelot 1993). 

 
3. Sulphur, calcium and magnesium 
 
S occurs in the soil in inorganic and organic forms. In most 
soils, organically bound S provides major S reservoir (Rei-
senauer et al. 1973; Scott and Anderson 1976). Soil organic 
S can be divided into 2 fractions: C bonded S, and non-C 
bonded S. The latter fraction is made up of phenolic and 
choline sulphates and lipids (Freney and Stevenson 1966). 
The inorganic form of S in soil consists mainly of SO4

2-, 
which is mainly absorbed by plants. S taken up by plant 
cells, must be reduced as in majority of S containing mole-
cules S is present in reduced form (Saito 2000; Mazid et al. 
2011). The S containing organic compounds include the 
amino acids cysteine, cystine and methionine as well as the 
proteins containing these amino acids. The first step in S 
assimilation is the incorporation of S between H2SO4 (sul-
phuric acid) and ATP. The sulphuyrl group of H2SO4 rep-
laces the pyrophosphoryl group of ATP, thus forming ade-
nosine phosphosulphate and pyrophosphate, which is cata-
lysed by an enzyme ATP sulphurylase. The sulphuryl group 
of adenosine phosphosulphate (APS) is transferred to an 
SH-carrier complex which is then reduced to –SH group, 
the reducing power provided by the ferredoxin. In a further 
step, the –SH group of the carrier complex is transferred to 
acetyl serine leading to regeneration of original carrier SH-
complex. Acetyl serine then split into cysteine and acetate. 
This splitting step requires two additional reducing equiva-
lents, which also probably originate from ferredoxin (Saito 
2000). 
 
H2SO4 + ATP + 8H + acetyl serine 
 
 
cysteine + acetate + 3H2O + AMP + P~P 

 
This equation shows that sulphate reaction needs energy 

in the form of ATP and reducing equivalents. Hence, the 
reduction process depends on photosynthesis and especially 
on the level of ATP (Schiff and Hodson 1973). Sulphate is 
mainly reduced during the light period because sulphate 
reducing enzymes are located in the chloroplast membrane. 
Whether other organelles are also capable of reducing sul-
phate, is not known. Modern agriculture requires adequate 
fertilization of S to achieve maximum crop yield and 
performances (Crawford et al. 2000). S2- a major form of 
SO4

2- in aqueous phase of apoplast, may reduce photosyn-
thesis rate and thereby crop yield through inducing reactive 
oxygen species (ROS), involved in S2--induced stress, and 
the S2--induced enhancements in levels of ROS (Li et al. 
2007). 

The role of Ca in membrane stability is by far the most 
important process but other metabolic processes are also de-
pendent on Ca availability (Rengel 1992; Marschner 1995; 
Tuna et al. 2007). The feature includes a breakdown in the 
compartmentation of cell and an increase in cellular respira-
tion, followed by the leakage of endogenous respiratory 
substrates from the vacuole to the respiratory enzymes in 
the cytoplasm (Bangerth et al. 1972). Most of the Ca pre-
sent in plant tissues is located in the apoplast and vacuoles. 
The Ca concentration of cytoplasm remains low, ranging 
from 10-6 to 10-8 M (Marme 1983). The maintenance of this 

low cytoplasmic concentration of Ca is of vital importance 
for the plant cells (Hanson 1984), for there is now evidence 
that Ca may inhibit the activity of various enzymes located 
in the cytoplasm (Gavalas and Manetas 1980). The same is 
also true for the chloroplast enzymes. The low Ca concen-
tration not only prevents inhibition of enzyme activity, but 
it also inhibits precipitation of Pi as Ca-phosphate and the 
competition of Ca2+ with Mg2+ for binding sites of the 
enzymes (Hepler and Wayne 1985). The maintenance of 
low Ca concentration is achieved by the mechanisms which 
pump Ca2+ out of the cytoplasm into the apoplast or into the 
vacuole. Some of the Ca2+ is also sequestered by the endo-
plasmic reticulum and mitochondria, organelles relatively 
rich in Ca2+. 

Ca concentrations in the mitochondria are much higher 
than in the cytoplasm. Mitochondrial enzymes may be 
directly activated by Ca+ without the help of calmodulins 
(Marme 1983). One such enzyme which occurs in the mito-
chondria is glutamate dehydrogenase, which brings about 
the deamination of amino acids. Franklin-Tong et al. (2002) 
demonstrated that increase in free cytosolic Ca2+ could be 
triggered by self-incompatibility (SI) response in the pol-len 
of incompatible Papaver rhoeas (the field poppy). However, 
one key question that has not been answered is whether 
extracellular Ca2+ may be involved in this regard. To ad-
dress this question, they used an ion-selective vibrating 
probe to measure changes in extracellular Ca2+ fluxes around 
pollen tubes of poppy. They confirmed that there was an 
oscillating Ca2+ influx directed at the apex of the pollen 
tube and also provided the evidence that Ca2+ influx oc-
curred at the shanks of pollen tubes. Secondly, upon chal-
lenge with self-incompatibility (S) proteins, there was a sti-
mulation of Ca2+ influx along the shank of incompatible 
pollen tubes, approximately 50 mm behind the pollen tube 
tip. This demonstration of SI-induced Ca2+ influx suggested 
a role for influx of extracellular Ca2+ in the SI response. 

A major proportion of total plant Mg i.e. often over 
70% is present in diffusible form and associated with inor-
ganic anions and organic acid anions such as malate and 
citrate and also found associated with indiffusible anions 
including oxalate and pectate (Kirkby and Mengel 1976). 
The chief importance of Mg is due to its occurrence at the 
centre of the chlorophyll molecule. The fraction of the total 
plant Mg associated with chlorophyll, however, is relatively 
small, ranging 15 to 20% (Neales 1956). Besides its func-
tion in chlorophyll molecule, Mg+ is required in other phy-
siological processes. One major role of Mg2+ is that it acts 
as a cofactor in almost all the enzymes activating phos-
phorylation processes. Mg forms a bridge between pyro-
phosphate structure of ATP or ADP and the enzyme mole-
cule. The activation of ATPase by Mg2+ is brought about by 
this bridging function (Balke and Hodges 1975). In addition 
to phosphokinases some dehydrogenases as well as enolase 
are also activated by Mg2+. In these enzymes, however, Mg 
reaction is not specific and Mn2+ is often a more efficient 
activator. 

Mg2+ also plays a vital role in the aggregation of ribo-
somes. Mg2+ concentrations also modulate ionic currents 
across the chloroplast and vacuolar membranes and might, 
thus, regulate ion balance in the cell and stomatal opening. 
The significance of Mg2+ in homeostasis has been particu-
larly established with regard to the role of Mg2+ in photo-
synthesis (Panayotov 2004, 2005; Panayotov et al. 2005; 
Kostova et al. 2008). Fluctuations in Mg2+ level in the chlo-
roplast regulate the activity of key photosynthetic enzymes. 
Relatively little is known of the proteins mediating Mg2+ 
uptake and transport in plants. The plant vacuole seems to 
play a key role in Mg2+ homeostasis in plant cells. Physiolo-
gical and molecular evidences indicate that Mg2+ entry into 
the vacuole is mediated by Mg2+/H+ exchangers (Shaul 
2002; Hattori et al. 2007). 

A key reaction of Mg2+ is the activation of ribulose 
bisphosphate carboxylase. Light triggers the import of Mg2+ 
into stroma of the chloroplast in exchange of H+, thus pro-
viding optimum conditions for the carboxylase reaction. 
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The favorable effect of Mg2+ on CO2 assimilation and rel-
ated processes, such as sugar and starch production, are 
probably due to the consequences of this activation of ribu-
lose bisphosphate carboxylase. According to Barber (1982), 
Mg2+ is the most important cation species neutralizing the 
indiffusible anions of the thylakoid membrane. Skarpa et al. 
(2008) demonstrated the effect of Mg applied in the form of 
Mg nitrate to the soil supplemented with cadmium (Cd) on 
yield as well as qualitative and quantitative parameters in 
Papaver somniferum L. During the vegetative period, Mg 
fertilization had a positive effect on Mg and Ca concentra-
tions in the plant. Mg application also had a synergistic 
effect on N uptake and increased its content in the plant. In 
variants where Cd was supplemented, its content in the 
plants considerably increased. With Mg fertilization, the 
yield of poppy seeds increased when compared with the un-
fertilized variants; both in the variant with natural Cd con-
tent (3.6%) and the variant that was supplemented with Cd 
(19.9%). Cd had a synergistic effect, enhancing a better 
utilization of nutrients and resulting in the higher seed yield. 
As a result of Mg application the amount of morphine in 
poppy straw increased both in variants with natural and sup-
plemented Cd content. 

 
Role of micro-nutrients 
 
1. Manganese, iron, copper 
 
In its biochemical function, Mn2+ resembles with Mg2+ and 
both form an ATP bridge with the enzyme complex (phos-
phokinases and phosphotransferases). In the tricarboxylic 
acid cycle (TCA cycle), two of the functional enzymes i.e. 
decarboxylases and dehydrogenases are also activated by 
Mn2+, although it appears that in most cases Mn2+ is not 
specific for these enzymes and can be substituted by Mg2+. 
For the Mn2+ to be effective, it has to be utilized preferen-
tially, as it occurs in the activation of chloroplast RNA poly-
merase. Activation is brought about by either Mn2+ or Mg2+ 
but at low concentrations (1 mM or less); however, the 
former is much more effective. The peroxidase enzyme 
activity is enhanced in contrast to catalase enzyme in Mn-
deficient tissue (Husted et al. 2009). This increase in the 
activity of peroxidase is probably associated with the high 
activity of IAA oxidase, which is observed in Mn-deficient 
plants (Chatterjee et al. 1994). Peroxidases are most impor-
tant constituents of IAA oxidizing system (Jansen et al. 
2001). The most documented role of Mn in green plants is 
in the H2O splitting and O evolution system in photosyn-
thesis (Panayotov 2004, 2005; Panayotov et al. 2005). It has 
now been confirmed that Mn is required both by higher and 
lower plants, as it appears that a manganoprotein complex 
catalyzes the O2 evolution (Papadakis et al. 2007). This 
tightly bound Mn complex has not as yet been isolated and 
its structure is until now unknown. The reaction has been 
depicted by Edwards and Walker (1983) with a minimum 
requirement of 4 Mn atoms at each reaction centre of 
photosystem II. From this scheme, it follows that when Mn 
is deficient the ETC in the light reaction is seriously dis-
turbed resulting in the occurrence of other reactions inclu-
ding photophosphorylation and the reduction of CO2 (Apel 
and Hirt 2004; Moller et al. 2007). As a consequence of 
absence of Mn, nitrite (NO2

-) and sulphate are detrimentally 
affected. When NO2

- reduction is impaired the accumulated 
NO2

- can exert a feed back control on NO3
- reductase acti-

vity so that NO3
- is also accumulated. This is one reason 

why NO3
- accumulation is sometimes observed in Mn-defi-

cient plants. Pande et al. (2011) investigated the effect of 
varying Mn concentration (0.0, 2.5, 5.0 and 10.0 mg/kg) on 
medicinally important plant Mentha spicata and concluded 
that optimal level required was 2.5 mg/kg, beyond which 
growth parameters showed a gradual and significant decline. 
Highest stem and leaf yield was noticed which may be 
attributed to proper root development as indicated by its 
higher root weight. Mn supply improves the root growth 
and its activity as reported by Mou et al. (2010). 

The tendency of Fe to form chelate complexes and its 
ability to undergo a valency change are the two important 
characteristic which underlie numerous physiological effects 
of Fe (Cohen et al. 1998). 
 
Fe2+            Fe3+ + e- 

 
The most well known function of Fe relates to the acti-

vity of the enzymes in which haem functions as prosthetic 
groups (Rouault 2005). Here, Fe plays a similar role as does 
Mg in the porphyrin structure of chlorophyll. These haem 
enzyme systems include catalase, peroxidase, cytochrome 
oxidase as well as various cytochromes. The detailed func-
tion of the cytochrome in electron transport and involve-
ment of cytochrome oxidase in the terminal step of respira-
tion chain does not seem to be legitimate to describe here. 
Misra et al. (2006), while evaluating the Fe-efficient geno-
types of the medicinally important plant Ocimum, found an 
oxido-reducible reaction of peroxidase as well as high 
bands of peroxidase isoenzymes in OSP-6 genotype for the 
formation of monoterpene essential oil(s) and possibly the 
major constituents of eugenol through the high production 
of photosynthates. Pande et al. (2011) investigated the 
effect of varying Fe concentration (0.0, 5.0, 10.0 and 15.0 
mg/kg) on medicinally important plant Mentha spicata and 
found that fresh weight, dry weight, oil yield and chloro-
phyll content increased significantly with increasing Fe 
concentration. The optimal dose was 10.0 mg/kg for maxi-
mum increment. 

Plants require Cu in very less quantity for their proper 
functioning. The Cu content in most plants generally varies 
between 2-20 ppm in dry plant material. Enzymatically 
bound Cu participates in redox reactions which are mostly 
dependent on the valency change. 
 
Cu2+ + e-         Cu+ 

 
In this respect, Cu is similar to Fe, although Cu+ is 

much less stable than the corresponding Fe2+. In protein 
complexes, Cu has particularly a high redox potential. Most 
Cu enzymes/compounds (plastocyanin, superoxide dismu-
tase (SOD) and amine oxidases) react with O2 and reduce it 
to H2O2 or H2O. In Cu containing proteins, three different 
forms of Cu are distinguished (Sandmann and Bogger 
1983). Type I is the blue Cu protein (e.g. plastocynin), 
which functions without oxidase activity in one electron 
transfer. Types 2 are non-blue Cu proteins which are per-
oxide producing oxidases. Type 3 Cu-containing protein 
(e.g. phenolase) is non-blue and it functions as a two elec-
tron acceptor in oxidation process, which catalyses the oxi-
dation of monophenols to ortho- and di-phenols and then 
further to o-quinones and H2O. Cu proteins are also present 
in multi Cu enzymes containing all the above three types of 
Cu. These enzymes include ascorbic acid oxidase and lac-
tase catalase (Navarro et al. 1997). 
 
2AH2 + O2             2A + 2H2O 

 
Approximately 70% of the total Cu in leaf is bound to 

various organelles/components of the cell, of which more 
than half is bound to plastocyanin, a component of ETC of 
photosystem I. The Cu is also a constituent of other photo-
synthetic enzymes, e.g. phenolase, SOD and fraction 1 pro-
tein, which has RuBP carboxylase and RuBp oxygense 
activity (Navarro et al. 1997). However, a precise role of Cu 
in photosynthesis is still unclear. The most common of the 
three types of SOD isoenzymes contain Cu and Zn. This 
enzyme protein (Cu-Zn SOD) has a molecular weight of 
about 32,000 da and contains two Zn and two Cu atoms. 
SOD occurs in all aerobic organisms and is essential for 
their survival in O environment (Shikanai et al. 2003). They 
protect the organism from the damage of superoxide radi-
cals, which can be formed when a single electron is trans-
ferred to O2. The high proportion of SODs in leaves appears 
to be localized in chloroplast which indicates a role of 
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SODs in protecting photosynthetic apparatus but the details 
about how this is achieved are still lacking (Jackson et al. 
1978). Cytochrome oxidase, the terminal oxidase in the 
mitochondrial transport chain, is one of the best studied Cu 
containing enzymes. This enzyme transfers electrons 
directly to molecular O2 which can be inhibited by CN; 
however, when this reaction occurs, another Cu containing 
oxidase, the CN- resistant quinol oxidase comes into action. 
This relatively recently discovered enzyme, called alterna-
tive oxidase, thus, provides a second pathway of ubiquinone 
oxidation in the mitochondria (America et al. 1994). Elec-
trons are believed to be transported directly from quinol 
substrate to molecular O, avoiding the cytochrome. Cu in-
fluences both carbohydrate and N metabolism. In the vege-
tative stage of plants, Cu deficiency can lower the content 
of soluble carbohydrates as might be expected owing to the 
specific role of Cu in photosynthesis (Gupta et al. 2002). In 
Withania somniferum, due to the application of copper sul-
phate (CuSO4) to plants, there was observed accumulation 
of high amount of Cu in concentration manner; it also 
decreased the plant fresh weight, shoot and root length, 
chlorophyll content and carotenoid content. Similarly, few 
phenolic compounds were also increased due to CuSO4 ap-
plication (Khatun et al. 2008). Santiago et al. (2000) ana-
lyzed compartmentation of phenolic compounds in mature 
leaves of Phyllanthus tenellus and their induction by CuSO4. 
They noticed that spraying plants with CuSO4 induced 
punctated lesions formed by groups of necrotic cells which 
accumulated brownish substances. 

 
2. Silicon, chlorine and sodium 
 
Si is found as a component of cell wall. Plants supplied 
with soluble Si produce stronger and tougher cell walls, 
providing a mechanical barrier against piercing and sucking 
the plant tissue by the insects. Si significantly enhances the 
tolerance of plant to heat and drought. Foliar sprays of Si 
have also shown benefits in reduction of populations of 
aphids in various field crops. Studies have also revealed that 
Si could be deposited by the plants at the site of infection 
by fungus to combat the penetration of cell walls by the 
fungi. Leaf erectness, stem strength and prevention of Fe 
and Mn toxicity have been improved by the application of 
Si. Though the Si is not essential for all the plants but can 
be beneficial for many plants (Epstein 1994; Hodson et al. 
2005; Ma and Yamaji 2006). Silicic acid like boric acid, 
however, reacts with o-phenol such as caffeic acid, a pre-
cursor in the biosynthesis of lignin, to form mono-, di- or 
polymeric Si complexes (Sacala 2009). It has also been 
noted that Si is somehow linked with the transpiration in the 
plants. Ample evidence are there that Si, when readily avail-
able to plants, plays a large role in their growth, mineral 
nutrition, mechanical strength, and resistance to fungal dis-
eases, herbivory, and adverse chemical conditions of the 
medium (Epstein 1994; Ma and Yamaji 2006; Epstein 2009; 
Sacala 2009). 

Plant tissues usually contain substantial amounts of Cl, 
often in the range of 50-500 μmol kg-1 dry weight. These 
values are comparable to those of macronutrients. Though 
the demand of Cl for optimal growth is less but its defici-
ency symptoms occur when Cl content falls below 20 μmol 
kg-1 dry weight. This clearly established the role of Cl as 
micronutrient (Clarkson and Hanson 1980). Cl is required 
in Hill’s reaction and the H2O splitting reaction in photo-
system II of photosynthesis (Kelly and Izawa 1978). Cl also 
enhances both evolution of O2 and photophosphorylation 
(Bove et al. 1963). In some plants, chloride ion influences 
photosynthesis indirectly via affecting stomatal regulation 
in the guard cells. During stomatal opening, inward flux of 
K+ into the guard cells must be accompanied by either ac-
cumulation of malate as a counter ion or by the inward flux 
of Cl. Cl sharply decreased NO3 uptake by the roots and 
facilitated the incorporation of N into organic compounds 
and translocation of N to the leaves in Catharanthus rhoeus 
(Flores et al. 2000). However, the studies depicting the role 

of chlorine and its compound in plant metabolism are very 
few, especially in medicinal and aromatic plants. 

Na belongs to the group of micro elements and hence, it 
cannot be expected to have a specific role in the metabolic 
activities of plants. When Na produces significant effects in 
plant metabolism, it is often regarded as a replacer of K as it 
is partly able to replace K if present in excess. Na is inef-
fective as a substitute for K, even for Na-loving plants such 
as sugar beet (Beta vulgaris), marigold (Calendula offici-
nalis) and barley (Hordeum vulgare). Na seems to affect the 
H2O relations of plants and often enables sugar beet and 
other crops to withstand drought conditions, which would 
otherwise produce severe adverse effects. In Cassia angus-
tifolia, Arshi et al. (2005) found that sodium chloride 
(NaCl) decreased biomass of root, shoot and leaf signifi-
cantly, while calcium chloride (CaCl2) increased the bio-
mass of these plant parts. Combined doses of NaCl and 
CaCl2 increased the proline content 8 times, while NaCl 
alone increased it 5 times. Combined application of NaCl 
and CaCl2 decreased the biomass but this effect was lesser 
than that exhibited by NaCl application alone. K+ and Ca+ 
concentration was inhibited with NaCl, while Na+ and Cl- 
concentrations were increased. CaCl2 and combined treat-
ment (NaCl + CaCl2) increased the K+ and Ca+ concentra-
tions as well. Similarly, in some medicinal plants, they also 
found that NaCl decreased the biomass, length of root and 
shoot, photosynthetic rate, stomatal conductance, total chlo-
rophyll content, protein content, nitrate reductase activity 
and reduced N content of leaves, while proline and nitrate 
content increased (Arshi et al. 2002). In Withania somnifera, 
different Na salts viz. NaCl, sodium sulphate (Na2SO4) and 
sodium carbonate (Na2CO3) decreased the germination per-
centage, shoot length, root length, plant dry weight and 
chlorophyll as well as carotenoids contents of the plants sig-
nificantly (Jaleel et al. 2009). 
 
3. Zinc, molybdenum and boron 
 
Zn facilitates the binding between the enzyme and substrate, 
bringing about the conformational change in the system. A 
number of enzymes, including enolase, are activated by 
Zn2+ in more or less the same way they get activated by 
Mn2+ and Mg2+. Till now, the only authenticated enzyme 
that gets specifically activated by Zn2+ is carbonic anhyd-
rase (CA). This enzyme catalyzes the following reaction: 
 
H2O + CO2        H+ + HCO3- 

 
It is generally accepted that CA is localized in the cyto-

plasm but there are also evidences to suggest its presence in 
the chloroplasts (Findenegg 1979). The enzyme promotes 
hydrolysis and hydration reactions involving Carbonyl 
groups (Sandmann and Boger 1983). Jacobson et al. (1975) 
reported its supposed role in mediating a short-term tran-
sient pH effect, thus acting as a buffer. Such a role of this 
enzyme was suggested because of its high concentration in 
chloroplast stroma. There it protects proteins from denatu-
ration, which can occur as a result of local pH change asso-
ciated with activation of H+ pump and the incorporation of 
CO2 into ribulose 1, 5 bisphosphate. The role of CA, how-
ever, is still a matter of speculation. Zn is involved in C 
assimilation, saccharide accumulation, free radical removal, 
antioxidant enzymes activation, C utilization in terpene bio-
synthesis and in overall growth of the plants. The require-
ment of Zn for Japanese mint (Mentha arvensis) and its 
limitations imposed on photosynthetic C metabolism and 
translocation in relation to essential oil accumulation were 
shown by Misra and Sharma (1991). Misra et al. (2005) 
showed that in geranium (Pelargonium graveolens L.), Zn 
acts as an antioxidant promoter, apart from its essentiality 
as micronutrient. Varying concentrations of Zn from 0–1.0 g 
m-3 (Zn0 to Zn1.000) affected net photosynthetic rate, con-
tents of chlorophyll and essential monoterpene oil(s). Zn0.250 
resulted in maximum total essential monoterpine oil(s) con-
tent i.e. 0.21%. However, Zn0.005-Zn0.250 significantally 
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affected the net photosynthetic rate, contents of chlorophyll 
and essential monoterpene oil(s). At Zn0.250 concentration, 
maximum peroxidase activity was obtained with the pro-
duction of biomolecule geraniol. Other enzymes containing 
Zn include alcohol dehydrogenase, SOD and RNA poly-
merase (Vallee and Wacker 1970; Sandmann and Boger 
1983). Alcohol dehydrogenase catalyzes the reduction of 
acetaldehyde to ethanol, a reaction in higher plants largely 
confined to meristematic zones such as root apices. In one 
of the three types of SODs, the metal prosthetic group in-
cludes Zn associated with Cu (Cu-Zn SOD). The metal 
catalyses the conversion of superoxide radical and O2

- to 
hydrogen per oxide and O, promoting anaerobic organism 
to defend themselves from the damage caused by O2

-. The 
function of Zn in this isoenzyme has yet to be established. 
Foliar fertilization of plants with Zn resulted in an increase 
of nutrient content in the dry matter of leaves, with the most 
intensely absorbed element being the Zn itself (Lata and 
Sadowska 1996). 

Mo is an essential element of the respiratory and assimi-
latory nitrate reductase. The former is confined in denitri-
fying bacteria and catalyzes the reduction of nitrate to 
nitrite. Assimilatory nitrate reductase is present in different 
kinds of organisms such as bacteria, cyanobacteria, algae, 
fungi and higher plants (Kaiser et al. 2005). It is supposed 
that in oxido-reduction process, Mo facilitates the transport 
of an electron. Three Mo-enzymes have so far been found 
in plants (Self et al. 2001). Nitrate reductase catalyzes the 
reduction of nitrate, the key step in inorganic N assimilation. 
Aldehyde oxidase catalyzes the last step of biosynthesis of 
phytohormones indole acetic acid and abscisic acid. Xan-
thine dehydrogenase is involved in the catabolism of 
purines (Mendel and Haensch 2002; Kaiser et al. 2005). 
With the exception of bacterial nitrogenase, Mo-enzymes 
share a similar heterocyclic compound (pterin) composed of 
a pyrazine ring and a pyrimidine ring at their catalytic sites, 
the Mo cofactor. Mo is biologically inactive unless it is 
complexed with its cofactor. Among the micronutrients 
essential for the growth of plants and microsymbionts, Mo 
is required in minute amounts. In contrast to bacteria, no 
specific Mo uptake system is known in higher plants, but 
since molybdate (A molybdate is a compound containing an 
oxoanion with molybdenum in its highest oxidation state of 
6) and sulfate behave similarly and have similar structure, 
uptake of molybdate could be mediated unspecifically by 
one of the sulfate transporters. Transport of Mo into dif-
ferent plant organs occurs via xylem and phloem. Pterin-
bound Mo constitutes the cofactor of important plant en-
zymes involved in redox processes e.g. nitrate reductase, 
xanthine dehydrogenase, aldehyde oxidase and probably 
sulfite oxidase. Biosynthesis of the Mo cofactor (Moco) 
starts with a guanosine-X-phosphate. Subsequently, a S-free 
pterin is synthesized; then S is added and finally Mo is 
incorporated. In addition to the molybdopterin enzymes, 
small molybdopterin binding proteins without catalytic func-
tion are known to probably be involved in the storage of 
Moco (Williams and Frausto da Silva 2002; Sauer and Fre-
bort 2003). In symbiotic systems N supply of the host plant 
is strongly influenced by the availability of Mo in the soil, 
since both bacterial nitrogenase and NADPH-dependent 
nitrate reductase of mycorrhizal fungi are Mo enzymes. In 
Nicotiana tabacum Mo had negative effect on nicotine con-
tent (Tso et al. 1973). Aziz et al. (2010) noticed significant 
increase in various plant growth parameters viz. and che-
mical composition by the use of varying concentrations of 
Zn (0,100 and 200 ppm) in Cymbopogon citratus. However, 
the greatest increase in plant height, fresh and dry weight 
yield was noticed by increasing Zn application and 200 ppm. 
However, Das et al. (2005) and Pandey et al. (2006) ob-
served similar results in other crops of medicinal impor-
tance, which shows the regulation of metabolic activities 
governed by mineral elements. 

B has been shown to be an essential element for higher 
plants in several metabolic processes in the plant (Blevins 
and Lukaszewski 1998; Reid et al. 2007).  The requirement 

of plants for B is as little as 2 ppm and it may be present in 
plant tissue up to 75 ppm. It is required for translocation of 
sugars and also regulates flowering and fruiting, cell divi-
sion, salt absorption, hormone movement, pollen germina-
tion, carbohydrate metabolism, H2O use and N assimilation 
in the plants (Brown et al. 2002; Camacho-Cristobal et al. 
2008). Evidence in the literature supports the idea that the 
major functions of B in growth and development of plants 
are based on its ability to form complexes with the com-
pounds having cis-diol configurations (Hu et al. 1997). The 
formation of B complexes with the constituents of cell walls 
and plasma membranes as well as with the phenolic com-
pounds seems to be a decisive step affecting the physiolo-
gical functions of B. B seems to be of crucial importance 
for the maintenance of structural integrity of plasma mem-
branes (Hu et al. 1997). This function of B is mainly related 
to stabilization of cell membranes owing to its association 
with the membrane constituents. B also protects plasma 
membranes against the oxidative damage caused by the 
ROS. In B-deficient plants, plasma membranes become 
highly leaky and lose their functional integrity. Enhanced 
oxidation of phenols is responsible for generation of reac-
tive quinones, which subsequently produce extremely toxic 
O2 species, thus, increasing the risk of oxidative damage to 
vital cell components such as membrane lipids and proteins. 
In B-deficient tissues, enhancement in levels of toxic O2 
species may also occur as a result of impairments in photo-
synthesis and antioxidative defense systems. Recent evi-
dence shows that the levels of ascorbic acid, non-protein 
SH-compounds (mainly glutathione) and glutathione reduc-
tase, the major defense systems of the cells against toxic O2 
species, are reduced in response to B deficiency. There is 
also increasing evidence that, in the heterocyst cells of 
cyanobacteria, B is involved in protection of nitrogenase 
activity against O2 damage. Boric acid may bind to cis-diols, 
i.e. the compounds that contain pairs of cis hydroxyl groups 
such as sugar and sugar alcohols. The effects of B on plant 
growth and development depend on its specific complexing 
with borate and polyhydroxy substrates, enzyme protein 
and the co-enzymes with proper configuration of OH groups 
(Blevins and Lukaszewski 1998; Herrera-Rodríguez et al. 
2010). However, meager studies on the role of B in meta-
bolism of medicinal plants have been conducted in recent 
years which need special attention to have a better under-
standing. 

 
4. Cadmium and cobalt 
 
Cd and Zn are chemically very similar. Cd is able to mimic 
the behavior of essential element Zn in its uptake and meta-
bolic function. Unlike Zn, Cd is toxic both for plants and 
animals (Sandalio et al. 2001; Akguc et al. 2008). The basic 
cause of toxicity probably lies in its higher affinity with 
thiol group (SH) of enzymes and other proteins. In many 
plants, excess Cd may also disturb Fe metabolism and can 
cause chlorosis of plant parts (Kosma et al. 2004). Edel-
bauer and Stangl (1992) found a direct effect of Cd in 
reducing element uptake; the toxicity of this heavy metal 
affected various enzymes and membrane systems, but in-
direct effects are also conceivable. The reduction of micro-
nutrient levels in the case of Cd exposition appeared not 
only to depend upon the applied Cd concentration to the 
substrate but also on the micronutrient status of the plant 
(Lux et al. 2011). 

Co, a transition element, is an essential component of 
several enzymes and co-enzymes (Aziz et al. 2007). It has 
been shown to affect growth and metabolism of plants to 
different degrees depending on the concentration and status 
of Co in the rhizosphere and soil. Co interacts with other 
elements to form complexes. The cytotoxic and phytotoxic 
activities of Co and its compounds depend on the physico-
chemical properties of these complexes, including their 
electronic structure, ion parameters (charge-size relations) 
and coordination. Thus, the competitive absorption and 
mutual activation of associated metals influence the action 
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of Co regarding various phytochemical reactions. Co is not 
found at the active site of any respiratory chain enzymes 
(Atta-Aly et al. 1991). There are two sites of action of Co2+ 
in mitochondrial respiration, since it induces different res-
ponses towards different substrates such as alpha-keto glu-
tarate and succinate. In lower organisms, Co2+ inhibits tetra-
phyrrole biosynthesis, but in higher plants it probably parti-
cipates in chlorophyll b formation (Gad and Kandil 2009). 
The exogenously added metal causes morphological dam-
age to plastids and brings about changes in the chlorophyll 
content (Gad and Kandil 2009; Tan et al. 2010). It also in-
hibits the differentiation of starch grain and alters the struc-
ture and number of chloroplasts per unit area in the leaf 
(Gad and Kandil 2009). The role of Co in photosynthesis is 
controversial. Its toxic effect results in the inhibition of PS-
II. It inhibits either the function of reaction centre or that of 
component of PS-II acceptor by modifying the electron 
acceptor site of secondary quinone (QB). Co2+ reduces the 
export of photoassimilates and the extent of dark fixation of 
CO2 (Kurosaki 1996). In C4 plants, it hinders fixation of 
CO2 by inhibiting the activity of the enzymes involved 
(Palit and Sharma 1994; Gad and Kandil 2009). Relatively 
higher concentrations of Co are toxic to the plants (Gal et al. 
2008). Toxic effects of Co on plant morphology include leaf 
fall, inhibition of greening, discolored veins, premature leaf 
closure and reduction in shoot weight. Being component of 
vitamin B-12 and cobamide coenzyme, Co2+ helps in the 
fixation of molecular N in root nodules of leguminous plants 
(Yadav and Khanna 2002; Bolachander et al. 2003; El-
Sheekh et al. 2003; Parmar and Chanda 2005; Gad 2006; 
Jayakumar et al. 2008). However, in cyanobacteria, CoCl2 
inhibits the formation of heterocyst, ammonia (NH3) uptake 
and nitrate reductase activity. The interaction of Co with 
other metals mainly depends on the concentration of the 
metals used. For example, high level of Co2+ induces Fe 
deficiency in plants and suppresses uptake of Cd by roots 
(Jayakumar and Jaleel 2009). It also interacts synergistically 
with Zn, Cr and Sn (Vinay et al. 1996; Tan et al. 2010). The 
beneficial effects of Co include retardation of senescence of 
leaf, increase in drought resistance in seeds, regulation of 
alkaloid accumulation in medicinal plants and inhibition of 
ethylene biosynthesis (Gad and Kandil 2009). The plant 
mechanism of resistance to toxic concentration of Co may 
be associated with its intracellular detoxification rather than 
the defective transport. Among higher plants, only few ad-
vanced Cu-tolerant families showed cotolerance to Co2+. 
Tolerance of plants against Co2+ may sometimes determine 
the taxonomic shifting of several members of the Nyssaceae. 
Due to the high Co content in serpentine soil, the uptake of 
essential elements by plants is reduced, a phenomenon 
known as ''serpentine problem,'' for New Caledonian fami-
lies like Flacourtiaceae (Yang et al. 1985). A high amount 
of soil Ca may neutralize the toxic effects of heavy metals 
in the adaptable genera grown in this type of soil. The bio-
magnification of potentially toxic elements, such as Co, 
coming from coal ash or H2O into food webs, needs ad-
ditional studies for effective biological filtering (Palit and 
Sharma 1994). However, Co behaves like other heavy metals 
such as Fe, Mn, Zn and Cu, which tend to form chelate 
compounds. Additionally, Co is essential for symbiotic N2 
fixation (Ahmed and Evans 1960). In Nicotiana, application 
of Co increased the concentration of N, P, K and Na, while 
the concentration of Mg decreased (López-Lefebre et al. 
2002). Ca also showed a positive response to Co applica-
tion; Fe, Mn, Cu and Zn also showed positive response to 
Co application, but at lower concentrations. Similarly, Co 
and Ca content in the soil were positively correlated with 
seed alkaloid content of Colchicum autmnale, which was 
probably due to enhanced uptake of various other minerals 
that significantly elevated metabolic activities in the plant 
(Poutaraud and Girardin 2005; Aziz et al. 2007). 

 
5. Aluminum, nickel, chromium and selenium 
 
More than 15% of the earth’s crust is made up of Al2O3. 

The solubility of Al in soil is very low, due to which neutral 
and alkaline soils may not be toxic to plant growth. There 
are some evidences that Al in low concentration is benefi-
cial for plant growth though the mechanism is not clear 
(Delhaize and Ryan 1995; Matsumoto 2000; Vardar et al. 
2006). Higher plants usually contain Al up to 200 ppm in 
the dry matter. Generally, Al content in roots is much higher 
than in the upper plant parts. It is supposed that a substan-
tial proportion of root Al is fixed in free space. The dissolu-
tion of Al hydroxy compounds in soil depends much on soil 
pH. Low soil pH values may result in high level of soluble 
Al, which is toxic to plants (Ozyigit and Akinci 2009). The 
first observable effect of Al on plants is limitation in root 
growth (Jones and Kochian 1995). Frequently, phosphate 
uptake and phosphate translocation to the upper plant parts 
are affected. In the plant cell, Al may interfere with the 
phosphate metabolism through the formation of stable Al-
phosphate complexes. According to Siegel and Haug (1983), 
Al binds to calmodulins and may interfere with various en-
zymatic processes. The plasma membrane is also affected 
by high Al concentrations (Vardar and Ünal 2007). Al may 
have a detrimental effect on ion uptake. Grimme (1983) 
noticed that Al especially retards the uptake of Mg+ (Jones 
and Kochian 1995). 

Ni is closely related to Co both in its chemical and phy-
siological properties. It readily forms chelate compounds 
and can replace other heavy metals from physiologically 
important sites. High Ni concentration has a toxic effect on 
plants. Its high concentration in nutrient medium reduces 
the uptake of most other nutrients (Crooke and Inkson 
1955). Knight and Crooke (1956) noted a reduction in nut-
rient uptake caused by the damaging effects of high Ni con-
centration on the roots. Nonetheless, Ni has shown to be an 
integral part of the enzyme urease isolated from jack bean 
(Canavalia ensiformis) seeds (Brown et al. 1990). The bio-
logical significance of Ni as a possible micronutrient has 
earlier been reviewed by Aziz et al. (2007). 

There is no evidence of any essential role of Cr in plant 
metabolism. Soil Cr is largely unavailable to plants because 
it occurs in relatively insoluble compound such as chromite 
Fe-Cr2O4 or mixed oxides of Cr, Al and Fe. Besides, it is 
found in silicate lattices. The rate of uptake and transloca-
tion of Cr by plants is low. It is supposed that Cr3+ and 
CrO4

2- are taken up by two different mechanisms (Bollard 
1983). Uptake of CrO4

2- is depressed by SO4
2-. Cr is found 

to inhibit the uptake of other minerals such Fe, Mn, Cu and 
Zn in Phyllanthus amarus and Solanum nigrum (Rai et al. 
2007). 

Selenium (Se) resembles with S in its chemical proper-
ties. In its uptake, there occurs a competitive effect between 
selenate and sulphate, indicating that both the ions have 
affinity for the same carrier sites (Antal et al. 2010). The 
incorporation of Se into amino acids analogous to those of 
S has also been observed in a number of plant species 
(Paterson and Butler 1962). It is believed that Se com-
pounds interfere with S metabolism through replacement. 
However, Se is not able to replace S in all its metabolic 
functions. The differences between plants in their ability to 
accumulate and tolerate Se have not been fully explained. It 
is reported that in non-accumulator plants, Se remains more 
in proteins (Vogrincic et al. 2009; Antal et al. 2010). 

 
REGULATORY ROLE OF MINERAL ELEMENTS IN 
PROTEIN SYNTHESIS 

 
Major steps in protein synthesis 
 
All the metabolic activities in living organisms are cata-
lyzed by enzymes, which are proteins. Cells are capable of 
synthesizing the proteins, essential for the modulation and 
maintenance of cellular activities. Formation of proteins, 
using amino acids (building blocks), is based on the infor-
mation encoded in the nucleic acids (Deoxyribose nucleic 
acid (DNA) and Ribose nucleic acid (RNA)). Protein syn-
thesis generally consists of two major steps: transcription 
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and translation (Berg et al. 2002; Meiger and Thomas 2002). 
Proteins are synthesized in the cytoplasm according to the 
information present in the messenger RNA (Wickens et al. 
2000; Mendez and Richter 2001). Transcription is the pro-
cess, in which the genetic information present in the DNA is 
used to produce a complementary RNA strand. One of the 
strands of DNA double helix is used as a template by RNA 
polymerase to synthesize a messenger RNA (mRNA). The 
mRNA migrates from the nucleus to cytoplasm, where it is 
free to move. The mRNA goes through different types of 
maturation steps including the one called mRNA splicing, 
through which the non-coding nucleotide sequences are 
eliminated. The coding mRNA sequence is a unit of three 
nucleotides called a codon (Gnatt et al. 2001). During trans-
lation, the mRNA molecules bind to protein-RNA com-
plexes called ribosomes located in the cytosol (Lodish et al. 
2000; Kapp and Lorsch 2004). The ribosome binds to 
mRNA at the start codon (AUG) that is recognized only by 
the initiator tRNA where they are translated into polypep-
tide sequences (Nika et al. 2000; Pestova et al. 2001; 
Schmitt et al. 2002; Sonenberg and Hinnebusch 2009). The 
ribosome mediates the formation of a polypeptide sequence 
based on the mRNA sequence. During this stage, complexes, 
composed of an amino acid linked to tRNA, sequentially 
bind to the appropriate codon in mRNA by forming com-
plementary base pairs with the tRNA anticodon. The ribo-
some moves from codon to codon along the mRNA. Amino 
acids are added one by one and are thus translated into 
polypeptidic sequences as directed by DNA and represented 
by mRNA. At the end, a release factor binds to the stop 
codon, terminating the translation step and releasing the 
complete polypeptide (protein) from the ribosome (Nissen 
et al. 2000; Valadkhan and Manley 2001; Schmitt et al. 
2002; Mandal et al. 2003; Bruce 2008). 

N is by far the largest N fraction and amounts to about 
80-85% of the total N present in proteins present in green 
plants (Kusano et al. 2011). The N of nucleic acids makes 
about 10% and soluble amino N about 5% of total N present 
in plant material. In vegetative plant parts, the enzymes 
constitute the major portion of proteins, whereas in seeds 
and grains the major protein fraction is made up of storage 
protein. Besides, N is also an essential constituent of vari-
ous coenzymes. Glutamate and glutamine are the first two 
amino acids synthesized during the process of NH3 assimi-
lation. Glutamate and aspartate as well as their amides 
accumulate when high levels of inorganic N are applied to 
plants. Under such conditions the excess inorganic N is ob-
viously used in protein synthesis (Coruzzi and Bush 2001; 
Coruzzi 2003; Schachtman and Shin 2007; Krouk et al. 
2010). 

S is essential for the conversion of N into amino acids 
and the linkage of these amino acids into complete pro-
teins. S accounts for about 1% of the plant tissue. S defici-
ency causes accumulation of nitrates in plant tissue instead 
of forming amino acids and protein (Schnug and Haneklaus 
1998; Kertesz and Mirleau 2004). Elemental S is oxidized 
into a plant-usable form of sulphate by an S-oxidizing 
microorganism known as Thiobaccillus. This important soil 
organism functions actively when the soil is well aerated. 
Compact soils create anaerobic conditions that can reduce 
sulphates to toxic acids of sulfur and gases. Amino acids are 
the basic structural units of all proteins and they play a very 
important role in the manufacturing of proteins. There are 
two amino acids which contain an S atom and are called S-
containing amino acids; viz. cysteine and methionine (Sche-
rer 2001; Ostrowska et al. 2008). Cysteine is an S-con-
taining amino acid and is closely related to cystine. Cystine 
consists of two cysteine molecules joined together. Cysteine 
contains a sulphydryl (-SH) group; this is tremendously re-
active and can form H bonds. This S-containing amino acid 
is very important because it can also form disulphide brid-
ges. S-containing amino acids like cysteine are required for 
the production of taurine and are also a component of the 
antioxidant gluthione. Methionine is another S-containing 
amino acid; it is the "start" amino acid in the process of 

protein synthesis, and is therefore used as beginning step of 
every single protein formed. Its S atom carries thioether lin-
kage and is relatively unreactive (Scherer 2001). 

The unique function of phosphate in metabolism is its 
formation of pyrophosphate bond, which allows energy 
transfer. Uridine triphosphate (UTP), cytidine triphosphate 
(CTP) and guanosine triphosphate (GTP) are analogous 
compounds to ATP. Uridine triphosphate is required for the 
synthesis of sucrose and callose, CTP is required for the 
synthesis of phospholipids, and GTP is required for the for-
mation of cellulose. All of these nucleotide triphosphates 
(ATP, UTP, GTP and CTP) are also involved in the syn-
thesis of ribonucleic acid (RNA). For the synthesis of de-
oxyribonucleic acid (DNA), deoxy form of the nucleotide 
triphosphates is required. In the deoxy form, ribose sugar of 
the nucleotide is substituted by deoxyribose sugar. The 
phosphate group in nucleic acid bridges the ribose (RNA) 
or deoxyribose (DNA) sugars with another ribose or deoxy-
ribose sugar by two ester bonds. DNA is the carrier of gene-
tic information while various forms of RNA function in pro-
tein synthesis (Berg et al. 2002; Meiger and Thomas 2002; 
Noller et al. 2002). 

Generally, when plants are Mg-deficient, a proportion 
of non-protein N increases, indicating that Mg deficiency 
inhibit protein synthesis. This does not result from the lack 
of synthesis of particular amino acids, as it is in the case of 
S deficiency. The effect is probably caused by dissociation 
of the ribosomes into their sub-units in the absence of Mg2+ 
(Watson 1965). Thus, it appears that Mg2+ is used to stabi-
lize the ribosomal particles. This ribosomal configuration is 
necessary for protein synthesis. Mg is also believed to have 
a similar stabilizing effect on the matrix of the nucleus. 
According to Wunderlich (1978) binding of ribosomal sub-
units is achieved by a bridging effect of Mg2+ on neigh-
bouring indiffusible anion. The transfer of amino acyl from 
amino acyl tRNA to the polypeptide chain is also probably 
facilitated by Mg2+. High concentrations of MgSO4 are 
most favorable for both root growth and ginsenoside ac-
cumulation (up to 8.89 mg/g dry weight (DW)) in Panax 
ginseng (Yu et al. 2001). 

B is essential in the synthesis of the nitrogenous base 
uracil, which is needed for RNA metabolism (Albert 1968). 
The distribution of Co in plants is entirely species-depen-
dent and its uptake is controlled by different mechanisms in 
different species (Moreno-Caselles et al. 1997a, 1997b). 
Toxic concentrations of Co inhibit active ion transport. In 
higher plants, absorption of Co2+ by roots involves active 
transport. Its transport through cortical cells is operated by 
both passive diffusion and active process. In the xylem, the 
metal is mainly transported by the transpirational flow. Its 
distribution through the sieve tubes is acropetal; it takes 
place by complexing with organic compounds. The lower 
mobility of Co2+ in plants restricts its transport to leaves 
from stems (Page and Feller 2005). It also plays a vital role 
in DNA synthesis by reducing ribonucleotide to deoxyribo-
nucleotide. It is essential for production of methionine syn-
thase, which is involved in protein synthesis. High concen-
trations of Co hamper RNA synthesis, and decrease the 
amounts of DNA and RNA in the cell probably by modi-
fying the activity of a large number of endo- and exo-nuc-
leases (Bakkaus et al. 2005; Khan and Khan 2010). Inves-
tigations indicated that Al is adsorbed on DNA double helix 
and thus inhibits the separation of its two strands. The effect 
of NaCl was elucidated by Niknam et al. (2006) on a 
medicinally important plant Trigonella foenum-graecum L. 
and Trigonella aphanoneura Rech. The protein contents in 
both of these species were significantly higher in NaCl 
treated plants compared to the untreated plants. Regarding 
Mo, there is an important finding reported by López et al. 
(2007), which depicted that the dry matter production and 
protein content in red clover increased significantly as Mo 
concentration increased in the shoots from 0.5 to 1.0 mg 
Mo kg-1 dry matter. Ma et al. (2010) studied the effect of 
lanthanum nitrate (La3+) and cerium nitrate (Ce4+) on Echi-
nacea angustifolia, an important medicinal plant. They 
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noticed the dose-dependent effects of La3+ on soluble pro-
tein content, peroxidase activity and shoot differentiation. 
Yin et al. (2006) noticed that growth of Catharanthus 
roseus cells in suspension-culture ceased during phosphate 
starvation, but these cells grew up again upon addition of Pi 
even after long-term starvation. They studied the metabolic 
fate of [32P] Pi in 1-week-old stationary phase cells in ordi-
nary culture and in 1- or 2-week-old Pi-starved cells. Im-
mediately after Pi administration, the most heavily labeled 
organic compounds were nucleotides, followed by sugar 
phosphates. Pi starvation for 2 weeks slowed the speed of 
incorporation of 32P into nucleotides. The RNA, protein, 
and free nucleotide contents decreased during Pi starvation; 
however, these compounds, especially the nucleotides, in-
creased markedly in 24 h after the addition of Pi. These res-
ponses were found in all the cells, although total amounts of 
these compounds were lower in long-term Pi-deficient cells. 
Of the nucleotides, a marked increase was observed in 
nucleoside triphosphates and UDP-glucose. The transcript 
level of phosphate transporter and the activities of acid 
phosphatase, 5'- and 3'-nucleotidase, and adenosine nucle-
osidase were reduced by the addition of Pi. In contrast, the 
activities of adenine phosphoribosyltransferase, nicotinate 
phosphor-ribosyltransferase and nicotinamidase, which are 
salvage enzymes of purine and pyridine nucleotides, were 
markedly increased in Pi-fed cells. Little or no increase was 
observed in adenosine kinase. 

 
REGULATORY ROLE OF MINERAL ELEMENTS IN 
ION EXCHANGE 
 
Every living cell acquires raw materials (especially mine-
rals nutrients) from its surroundings for the biosynthesis of 
energy and release of the byproducts of metabolism in the 
environment. Some non polar compounds might be dis-
solved in lipid bilayer and cross the membrane unassisted 
by any carrier or transporter, while charged or polar com-
pounds or ions require a membrane protein (carrier or trans-
porter) for their transportation across the membrane. How-
ever, in some cases a membrane protein simply facilitates 
the diffusion of a solute down its concentration gradient, but 
such a transport often occurs against a gradient of con-
centration, electrical charge, or both; in this case, the solute 
is pumped in by a process that requires energy (Chrispeels 
et al. 1999). The energy is provided by the hydrolysis of 
ATP or may it be supplied during the movement of another 
solute down its electro chemical gradient with enough 
energy to carry yet another solute up its gradient; the ions 
may also move across the membrane through ion channels 
formed by proteins, or they may be carried across by iono-
phores, small molecules that mask the charge of ions and 
allow them to diffuse through the lipid bilayer (Rubio et al. 
1995; Gassmann et al. 1996; Sze et al. 1999). Except the 
few exceptions, the translocation of small molecules across 
the plasmas membrane is mediated by proteins such as 
transmembrane channels, carriers or ion pumps (Chrispeels 
et al. 1999; Lalonde et al. 1999; Sze et al. 1999). Within the 
eukaryotic cell, different compartments have different con-
centrations of metabolic intermediates, products and ions, 
and these substances move across the intracellular mem-
branes through tightly regulated, protein-mediated pro-
cesses. 

Nitrate is an important macronutrient. It is also acts as a 
signal for plant growth. Its level in the soil may vary by 
three to four times of its magnitude. Consequently, plants 
have evolved regulated energy dependent systems for the 
uptake of nitrate, using both high and low affinity transpor-
ters (Chrispeels et al. 1999). Most plant species are able to 
absorb and assimilate nitrate (NO3

�), ammonium (NH4
+), 

urea and amino acids as N sources, but the response to a 
particular form of N varies from species to species. In gene-
ral, most crop plants prefer a mixture of NH4

+ and NO3
- and 

take up a higher proportion of NH4
+ present in the soil solu-

tion only in specific cases, as in the case of Papaver somni-
ferum. Variation in soil nitrate level affects the rate of plant 

growth and concentration of NO3
- stored in plants. In unlim-

ited supplies of NO3
�, root and shoot concentrations of 

NO3
� can reach up to 100 mM, most of which is stored 

within the vacuoles. However, the cytoplasm is a more im-
portant compartment for NO3

- metabolism (Chrispeels et al. 
1999). In soil, NO3

- is carried towards the root by bulk flow 
and is absorbed into the epidermal and cortical symplasm. 
Within the root symplasm, NO3

� has the four following 
fates: (1) reduction to NO2

� by the cytoplasmic enzyme nit-
rate reductase; (2) efflux back across the plasma membrane 
to apoplasm; (3) influx and storage in vacuole; or (4) trans-
port to xylem for long-distance translocation to the leaves. 
Following long-distance translocation, NO3

� must leave the 
xylem and enter the leaf apoplasm to reach the leaf meso-
phyll cells, where NO3

� is again absorbed and either it is 
reduced to NO2

� or stored in the vacuole (Glass and Siddiqi 
1995; Crawford and Glass 1998). 

On reaching the root surface, uptake of NO3
- into the 

cell requires energy, even though external NO3
� concentra-

tion remains in low range. However, in spite of expenditure 
of energy on NO3

� uptake, there appears to be a significant 
efflux of NO3

� across the plasma membrane. The rate of 
efflux increases with increasing external NO3

� concentra-
tion. The NO3

� efflux is passive, and there is evidence that 
it is saturable and NO3

�-selective. Employing the use of 
inhibitors of RNA and protein synthesis has indicated that it 
is NO3

�-inducible. However, nothing is known about the 
proteins involved in the efflux pathway (Chrispeels et al. 
1999). The energy for ion uptake is provided by the proton 
gradient or pmf, which, based on typical cell parameters, is 
adequate to drive active NO3

� uptake over a wide range of 
external NO3

� concentrations. In addition, NO3
� uptake is 

associated with depolarization (an increase in the positive 
charge inside the cell) of the plasma membrane. Physiolo-
gical studies and molecular investigations in Nicotiana spe-
cies and Arabidopsis indicated that several N forms, inclu-
ding NO3

�, NH4
+ and amino acids, may participate in this 

down regulation, which can occur at the mRNA level. Such 
a regulation is important for coordinating the root uptake as 
per shoot demand for N during the growth cycle of the plant. 
A common explanation, given for the mechanism of rapid 
uptake of NH4

+ and inhibition of that of NO3
�, is that NH4

+ 
depolarizes the plasma membrane and, thus, reduces pmf 
for active NO3

� uptake by 2H+/NO3
� symport mechanism 

(Taylor and Bloom 1998). This explanation is supported by 
the observations that indicate that NH4

+ induces a sustained 
membrane depolarization and that the more depolarized the 
membrane potential is, the lower is the NO3

- -induced cur-
rent (Day et al. 2001; Roberts and Tyerman 2002; Kaba�a et 
al. 2003). However, since K+ is also known to depolarize 
the membrane electrical potential without an equivalent re-
duction in NO3

- uptake, the reduction in electrical potential 
alone seems insufficient to explain the short term inhibition 
by ammonium (García-Sánchez et al. 2000). An increase of 
N supply in Catharanthus roseus stimulated K and P uptake 
and their translocation to the leaves has been proven by the 
results of the chemical analysis (Lata and Sadowska 1996). 
El-Sherbeny et al. (2007) demonstrated the effect of dif-
ferent doses of N in the form of compost on an important 
medicinal plant Ruta graveolens L. They found positive 
effect of the compost doses on the amount of essential oil, 
rutin, coumarin and other secondary metabolites. Pavlíková 
and Tlustoš (1994) concluded that it is also important to 
choose a suitable form of N fertilizer, especially when the 
uptake of N from soil and the seed yields are concerned. 
The need for an optimal supply of N for poppy plants 
begins shortly after germination and lasts till the stage of 
formation of generative organs. 

 
Potassium channels 
 
The translocation of cations across biological membranes is 
an inherent feature associated with numerous physiological 
processes, including growth and development, signal trans-
duction and cell homeostasis. It is well known that adeno-
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sine and/or guanosine 3', 5'-cyclic monophosphate (cNMP; 
cAMP or cGMP) are important secondary messenger sig-
naling molecules in eukaryotic and prokaryotic cells. They 
are typically involved in transduction of a signal into a spe-
cific cellular response. Cyclic nucleotide gated cation chan-
nels (CNGCs) were first identified in animals, where they 
are involved in visual, gustatory and olfactory signal trans-
duction as well as in other physiological processes. Al-
though plant CNGCs showed relatively overall low se-
quence identity with animal CNGCs, they do share signifi-
cant homology at their pore regions and cyclic nucleotide 
binding sites (CNBSs). The functional channel is most 
likely represented as a homo-tetramer, although hetero-
tetrameric channels, organized in situ, should not be ruled 
out. Each subunit consists of six transmembrane domains 
(S1–6) containing a pore-forming region, with lower hydro-
phobicity, between S5 and S6 region. Moreover, CNGCs 
includes a CNBS intracellularly located downstream from 
the pore. These channels are directly gated upon binding 
with cAMP or cGMP and are permeable to a variety of 
monovalent cations as well as to Ca2+. In addition to these 
characteristics, plant CNGCs include a putative Ca2+/cal-
modulin binding site (CaMBS) embedded within the CNBS 
(Leng et al. 1999). Ca2+/calmodulin (Ca2+/CaM) and cNMPs 
are essential components in a number of well characterized 
signaling pathways, strengthening the argument that plant 
CNGCs play critical roles in Ca2+ signal transduction (Mer-
cier and Berkowitz 2002). 

K (K+) is required for every major step of protein syn-
thesis. The “reading” of the genetic code in plant cells to 
produce proteins and enzymes that regulate all growth pro-
cesses, would be impossible without adequate K. When 
plants are deficient in K, proteins are not synthesized des-
pite an abundance of available N. Instead, the protein “raw 
materials” (precursors) such as amino acids, amides and 
nitrate are accumulated. The enzyme nitrate reductase (NR) 
catalyzes the formation of nitrite from the nitrate that, in 
turn, gets converted to ammonium ions after being acted 
upon by nitrite reductase, leading to the formation of pro-
teins (ammonia assimilation). Since K is likely responsible 
for the activation and synthesis of the first enzyme (NR) in 
the series, NR is also thought to be responsible for protein 
synthesis apart from other important enzymes. K is a major 
nutrient in higher plants, where it plays a role in turgor 
regulation, charge balance, leaf movements and protein 
synthesis. Terrestrial plants are able to sustain growth at 
micromolar external concentrations of K+, at which K+ up-
take across the plasma membrane of root cells could be 
energized despite the presence of a highly negative mem-
brane potential. However, the mechanism of such an ener-
gized K+ uptake has long been remained obscure. Therefore, 
whole-cell mode patch, clamping [a technique for the study 
of measurement of membrane potentials and electrical 
properties of plant cell (Miedema and Assmann 1998)] has 
been applied to root protoplasts by Arabidopsis thaliana to 
characterize the membrane currents resulting from the ap-
plication of micromolar K+ concentrations. Analysis of 
whole cell current/voltage relationships in the presence and 
absence of micromolar K+ concentrations enabled direct 
testing of K+ transport for possible energization by cyto-
plasmic ATP and the respective trans-membrane gradients 
of Na+, Ca2+, and H+. Subtracted current/voltage relations 
for K+-dependent membrane currents are independent of 
ATP and could be reverse at potentials that imply H+-
coupled K+ transport with a ratio of 1 H+:K+. Furthermore, 
the reversal of the potential of K+ current shifts to negative 
mode as the external H+ activity is decreased. The K+-
dependent currents saturate in micromolar concentration 
range with an apparent Km of 30 mM, a value that is in 
close agreement with previously reported Km values for 
high-affinity K+ uptake. The high-affinity K+ uptake in 
higher plants is mediated by a H+:K+ symport mechanism, 
which is competent in driving K+ accumulation to equilib-
rium ratios in excess of 106-fold (Maathuis and Sanders 
1995). 

K (K+) is the most abundant cation in plants, whereas 
closely related Na (Na+) ion is toxic to most plants at high 
millimolar concentrations. Both K+ deficiency and Na+ toxi-
city are major constraints to crop production worldwide. In 
fact, K+ counteracts Na+ stress, while Na+, in turn, can 
alleviate K+ deficiency up to a certain degree (Pascal et al. 
2002). The beneficial effect of K+ on photophosphorylation 
has been observed by Watanabe and Yoshida (1970), Hartt 
(1972) and Pfluger and Mengel (1972). Overnell (1975) and 
Weller and Hofner (1974) have reported that K+ stimulates 
photosynthetic O2 production. These observations supported 
the view that K+ has direct influence on electron transport in 
the photosynthetic ETC. It might be supposed that the 
movement of K+ from the thylakoid spaces into the stroma 
of chloroplasts, which occurs in light, depolarizes the thy-
lakoid membrane that, in turn, favours the electron flow in 
transport chain (Mitchell 1966). Depolarization of plasma 
membrane by K+ uptake has a direct influence on phloem 
loading. Numerous researchers have shown that K+ enhan-
ces the translocation of photosynthates. K not only pro-
motes the translocation of newly synthesized photosyn-
thates, but also has a beneficial effect on the mobilization of 
stored material. Liu and Zhong (1996) noticed the effects of 
initial K+ concentrations (0–60 mM) on the kinetics of cell 
growth, nutrients metabolism and production of ginseng 
saponin and polysaccharide in suspension cultures of Panax 
ginseng by altering KNO3 and NaNO3 concentrations at 60 
mM of total NO3

-. They showed that comparatively a higher 
concentration of soluble sugars was stored within the cells 
under K+-deficiency, and that there was a curvilinear rela-
tionship between initial K+ concentration and active bio-
mass accumulation. The K+ consumption by the cells was 
dependent on the initial medium K+ concentration and there 
was a linear correlation between K+ consumption and nit-
rate consumption. Although K+ had little effect on the con-
tent of ginseng polysaccharide, the saponin content was re-
markably enhanced with the increase in initial K+ concen-
tration within a range of 20–60 mM. 

 
Calcium gradient and oscillations in growing 
pollen tubes 
 
Pollen tube growth delivers two sperm cells to embryo sac; 
it is essential for sexual reproduction in higher plants (Feijó 
et al. 2001; Hepler et al. 2001; Cárdenas et al. 2008). The 
process has important and unique features and is extremely 
fast. For example, the rate of movement of sperm cells is 1 
cm per hour in corn. The process is highly polarized and 
pollen tube growth is mainly confined to the tip ("tip-
growth"). It possesses a guidance mechanism that deter-
mines the direction of growth of the tube (Parton et al. 
2003; Wilsen and Hepler 2007). Several aspects of tip-
growth of the pollen tube have been deciphered; for exam-
ple, the Golgi apparatus produces vesicles containing cell 
wall precursor, and through cytoplasmic streaming the vesi-
cles flow to the apex of the pollen tube, where they fuse 
with the plasma membrane and secrete their contents into 
the cell wall. It is unclear how these events are orchestrated 
to achieve the high degree of polarity during pollen tube 
growth, although recent work indicated that different ions, 
especially Ca ions and protons play an important role in this 
regard (Feijó et al. 2001; Hepler et al. 2001; Song et al. 
2009). 

It is well known that both Ca ions and protons are 
essential for growth (Hepler et al. 2001; Iwano et al. 2009; 
Song et al. 2009). Ca ions must be present in the growth 
medium at a concentration above 10 μM, but these ions 
have detrimental effect above 10 mM. A high proton con-
centration or low pH facilitates both pollen germination and 
pollen tube growth. Recent work, focused on the intracel-
lular and extracellular status of Ca ions and protons has 
been conducted, using the technology that is available since 
the last decade. Studies on intracellular Ca, conducted by 
using fluorescent indicator dyes (Holdaway-Clarke and 
Hepler 2003), or the photoprotein and aequorin (Messerli et 
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al. 2000), revealed that the growing pollen tube possessed a 
highly focused gradient of free Ca at its extreme apex (Song 
et al. 2009). The intracellular Ca concentration, immedi-
ately adjacent to the plasma membrane, remains 2,000 to 
10,000 nM (Messerli et al. 2000), but it declines abruptly to 
a basal level i.e. 200 nM or less at 20 μm distance from the 
pollen tube tip. Recent studies showed that the apex of 
pollen tube contains an acidic region with a large alkaline 
domain towards the base of the clear zone (Feijó et al. 
1999). The pH gradient is large and extends from 6.8 at the 
tube apex to 7.8 at 20–30 μm distances from the tip. The 
extracellular influx of Ca++ and the intracellular Ca gradient, 
thus, mark the direction of pollen tube growth. Extracellular 
protons, like Ca ions, also show an influx at the apex of the 
growing pollen tube. However, in contrast to Ca ions, 
protons display a marked efflux along the side of the tube, 
close to the base of clear zone, in a position that corresponds 
to the location of the intracellular alkaline band (Feijó et al. 
1999; Ikeda et al. 2003; Watahiki et al. 2004). Vernoica et 
al. (2002) have previously noticed that the increases in 
cytosolic free Ca2+ triggered by the self-incompatibility (SI) 
response in incompatible Papaver rhoeas pollens. In a re-
cent study, they used an ion-selective vibrating probe to 
measure changes in the extracellular Ca2+ fluxes around 
poppy pollen tubes. They confirmed that there was an oscil-
lating Ca2+ influx directed at the apex of the pollen tube and 
that Ca2+ influx also occurred at the shanks of pollen tubes. 
Additionally, as per the challenge with self-incompatibility 
(SI) proteins, there is a stimulation of Ca2+ influx along the 
shank of incompatible pollen tubes, approximately 50 mm 
behind the pollen tube tip. Thus they demonstrated that SI-
induced Ca2+ influx played a role for influx of extracellular 
Ca2+ in the SI response. In a study on medicinally important 
plant Nicotiana tabacum, Tuna and Burun (2002) concluded 
that all heavy metals have negative effects on pollen charac-
teristics; however, the damage to pollen varies with the dose. 
All plants showed some tolerance against different pol-
lutants. 

The genus Crataegus (hawthorn) includes some impor-
tant species having medicinal, ornamental and sanitary pro-
perties. Among them, Crataegus douglasii (black hawthorn) 
and Crataegus oxyacantha (red hawthorn) are mostly used, 
having more nutrients, medical, ornamental and sanitary 
properties and used as a main dry tolerant rootstock recently. 
The fruits are the part having commercial value and the 
most important factors involved in fruit set are pollination, 
pollen tube growth and fertilization. Sharafi (2010a) studied 
pollen germination and tube growth of some East-Azer-
baijan, Iran indigenous hawthorn genotypes in different in-
vitro media for receiving the suitable medium for pollen 
germination and identifying favorable genotypes for using 
in the future breeding and orchard establishment programs. 
The in-vitro medium contained different concentrations of 
sucrose (5, 10, 15 and 20%), boric acid (0.005, 0.01 and 
0.02%) with (1.2%) agar and pollens were cultured in dif-
ferent media and maintained about 24 h at 22°C but growth 
was stopped with raising chlorophorm. The study showed 
that the best in-vitro medium for hawthorn pollen germi-
nation and tube growth were composed of 15% sucrose, 
0.005-0.01% boric acid and 1.2% agar and significant dif-
ferences observed between various media in the studied 
pollen traits. Sharafi (2010b) also studied pollen germina-
tion and tube growth in some Hashtroud and Maragheh 
indigenous genotypes of Rosa canina as these were the 
main factors affecting fruit set. The pollens were cultured in 
an in-vitro medium containing 15% sucrose, 0.01% boric 
acid and 1.2%. agar and maintained in 24°C in controlled 
condition. After 24 h pollens germination and growth were 
stopped with chlorophorm. The study concluded significant 
differences between germination percentage (PGP) and 
pollen tube length (PTL) of genotypes. 

 
 
 
 

REGULATORY ROLE OF MINERALS IN ALKALOID 
BIOSYNTHESIS 
 
Before discussing the regulatory role of minerals on alka-
loid biosynthesis, it is necessary to describe the general 
information about alkaloids. Alkaloids are compounds of 
non-peptidic origin that typically contain N and have com-
plex ring structures. They are produced primarily in higher 
plants but also in lower organism and in some animals 
having pharmacological importance. The name was derived 
from the word ‘alkaline’ in 1819 by Carle Meissner, while 
originally the term was used to describe any N-containing 
base (an amine in modern terms) having similar properties 
as basic salts derived from the alkali ashes of plants. The 
first identified alkaloid was morphine, from opium poppy 
(Luch 2009). Evidence suggests that alkaloids have been 
used by humanity as medicines and poisons for thousands 
of years. The first civilization that used them was probably 
the ancient Sumarians and Egyptians (Kutchan and Dittrich 
1995). However, it was not until early nineteenth century 
that these compounds were reproducibly isolated and ana-
lyzed. Advances in analytical separation techniques, such as 
chromatography and mass spectroscopy, led to elucidation 
of the chemical structure of alkaloids (Southon and Buck-
ingham 1989). When separated, in general they are color-
less, crystalline solids, basic in nature and have definite 
melting points. Some exceptions are, however, known. For 
instance, some alkaloids are not basic and others are 
brightly colored or liquid. Still it is unclear as to why the 
plants produce alkaloids. Several theories have been pro-
posed explaining the reason; of them some suggest that 
alkaloids are byproducts of normal plant metabolism or are 
produced as a means of defense against insects and animals 
or may be the reservoirs for molecules that plants often use. 
It is likely that all of these theories are correct up to some 
extent. 

 
Classification of alkaloids 
 
Alkaloids can be classified in three ways based on their 
chemical structure (nucleus containing N) or based on their 
biosynthetic pathway (the way they are produced in the 
plant) (Trease and Evans 1959). According to first type of 
classification as proposed by Hegnauer (1986), alkaloids 
are divided into three groups: 
 
a. True alkaloids: The basic unit in biogenesis of true alka-
loid is amino acid. They are poisonous and found in plants 
as salts of organic acids having heterocyclic ring with N. 
The non-N containing rings or side chains are derived from 
terpene units or acetate, while methionine is responsible for 
the addition of methyl groups to N atoms, e.g. morphine, 
codeine, etc. (Trease and Evans 1959; Aniszewski 2007). 
 
b. Proto alkaloids: The basic unit in biogenesis of a proto 
alkaloid is also amino acid but they do not have hetero-
cyclic ring with N. Instead, they may have N atoms outside 
the ring systems e.g., colchicine and ephedrine (Aniszewski 
2007). 
 
c. Pseudo alkaloids: The basic unit in biogenesis of proto 
alkaloid is terpenoids or purines instead of amino acids. 
They also have heterocyclic ring with N, e.g. caffeine, theo-
bromine, and theophylline (Aniszewski 2007). 

 
On the basis of biosynthetic pathways, alkaloids can 

also be divided into three groups (Trease and Evans 1959; 
Aniszewski 2007). Group I liberates amino N from the pre-
cursor during the biosynthesis of its alkaloids. Alkaloids 
belonging to this group are synthesized from diamino acid 
family, phenylalanine-tyrosine family and tryptophan family. 
They have a higher C:N ratio than their immediate precur-
sors. In this process, amino acid is converted into alkaloids, 
liberating one molecule of ammonia. Group II includes 
those alkaloids, which have the same number of N atoms as 
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their precursor do. Group III includes those alkaloids, 
which have a lower number of C:N ratio compared to their 
precursor. This group is sometime called as the group of 
pseudo alkaloids e.g., steroidal alkaloids, isoprene deriva-
tives, etc. (Waller and Nowacki 1978). 

The third type of classification system to be considered 
was offered by Manfred (2002). This classification concen-
trates on the N atom present within the chemical structure 
of the alkaloid, and classifies the alkaloids based on the 
environment of that N atom. If there are present multiple N 
atoms in the chemical structure of the alkaloid, the priority 
is given to the N atom present in the predominant ring. The 
following five groups of alkaloids may be framed based on 
this classification of alkaloids: 

 
Heterocyclic alkaloids 
 
The majority of the alkaloids occur in this group. These 
alkaloids have an N atom in a heterocyclic ring, or in some 
cases part of two heterocyclic rings (Trease and Evans 
1959; Joule and Mills 2000). 
 
i) Pyrrolidine alkaloids 
 
Alkaloids of this group contain five N rings and are pre-
dominately synthesized from ornithine and lysine, e.g. hyg-
rine, isolated from the leaves of Erythroxylum coca (coca 
plant); it is an important precursor to hyoscyamine and sco-
polamine (Trease and Evans 1959; Joule and Mills 2000). 
 
ii) Terpenoid indole alkaloids 
 
The indole alkaloids comprise a large family of alkaloids. 
Many of these natural products are physiologically active in 
mammals. For instance, the antimalarial drug quinine ex-
tracted from Cinchona officinalis, the antineoplastic drug 
camptothecin extracted from Camptotheca acuminata, the 
rat poison and homeopathic drug strychnine extracted from 
Strychnos nuxvomica and the antineoplastic chemothera-
peutic agents vincristine and vinblastine extracted from 
Catharanthus (periwinkle) belong to this group of alkaloids. 
In fact, the chemical synthesis of these complex alkaloids 
would be of academic interest, but due to their low yields 
they are not likely to be applied commercially. The indole 
alkaloids have indole as their structural backbone and are 
derived from tryptophan. The indole system can be con-
sidered to consist of a pyrrole ring and a benzene ring fused 
together to form the two isomeric benzopyrroles: indole and 
isoindole (Trease and Evans 1959; Joule and Mills 2000). 

The indole appears to be an essential constituent of the 
perfumes extracted from the flowers of some plants such as 
jasminum and citrus species. With respect to their structural 
features, indole alkaloids can be divided into two main 
classes: the first class of simple indole alkaloids and the 
second class of two structure-elements. That is, (1) trypta-
mine with indole nucleus and (2) C9 or C10 - monoterpene 
moiety, derived from secologanin. 

A common example is ergine, one of the ergot alkaloids, 
isolated from many plants and fungi. Ergine is a hallucino-
genic alkaloid having similar effects like indole alkaloids 
but has an overall lower level of visual stimuli (Laing 2003). 
Strychnine is another indole alkaloid, isolated from the 
Strychnos nux-vomica (strychnine tree) in Southeast Asia. It 
is used as a pesticide for killing small birds and rodents, as 
it is a very potent neurotoxin (Brams et al. 2011). The alka-
loids of Rauwolfia and Vinca also belong to this group. For 
centuries, the natives of the Himalayan foothills are using 
the roots of Rauwolfia for healing afflictions ranging from 
snake bites to insanity. Reserpine is the most important 
constituent of Rauwolfia. Reserpine depletes adrenergic 
vesicles of their transmitters, thereby, reducing the amount 
of neurotransmitter released. This causes hypotension, 
bradycardia and increased gastrointestinal motility and in-
creased the rate of defecation (Liles et al. 2006). The wide-
spread reference in folklore of the oral hypoglycemic 

properties of leaf extracts from the Catharanthus roseus 
prompted investigations which led to the discovery of 
dimeric indole-dihydroindole alkaloids i.e. vinblastine and 
vincristine. These alkaloids produced severe leukopenia in 
rats suggesting an anti-cancer potential especially for the 
treatment of leukemia (Zhigaltsev et al. 2005). 

The indole alkaloids derived from tryptamine and seco-
loganin can be classified according to the structural charac-
teristics of their skeletons into the following eight types 
(Trease and Evans 1959; Joule and Mills 2000). 
1. Corynanthean or C-type (sarpagine, yohimbine, ajma-

licine) 
2. Vincosan or D-type (vincoside) 
3. Vallesiachotamon or V-type (vallesiachotamine) 
4. Strychnan or S-type (vomicine) 
5. Aspidospermatan or A-type (condylocarpine) 
6. Eburnan or E-type (vincamine) 
7. Plumeran or P-type (kopsine) 
8. Ibogan or J-type (voaluteine) 

 
iii) Pyrrolizidine alkaloids 
 
The pyrrolizidine alkaloids have pyrrolizidine rings as their 
back bone, e.g. retronecine. Its ester derivatives are used as 
sex pheromones in lower animal species (Xiong et al. 2009). 
 
iv) Pyridine alkaloids 
 
Pyridine alkaloids have pyridine in their basic structure, e.g. 
nicotine. Nicotine, the addictive compound found in to-
bacco, can also be isolated from several other plants inclu-
ding Solanum seaforthianum (nightshade) (Lindvai and Vizi 
2008). Nicotine interacts with nicotine acetylcholine recep-
tors throughout the nervous system. In brain, by interfering 
with these receptors, nicotine increases the concentrations 
of several neurotransmitters including dopamine, which 
induces the feeling of relaxation (Dani and Bertrand 2007). 
Anabasine, an alkaloid found in Nicotiana glauca (tobacco 
tree), produces the same effects as nicotine. It also inter-
feres with the nicotine acetylcholine receptors throughout 
the body (Lindvai and Vizi 2008). 

 
v) Piperidine alkaloids 
 
The piperidine alkaloids have a piperidine ring in their che-
mical structure, e.g. Coniine. In the history, the alkaloid 
coniine was used to kill Socrates. This alkaloid is found in 
Conium maculatum and Sarracenia flava (Graham 1997; 
Schep et al. 2009). Coniine is a potent neurotoxin and less 
than 0.2 g of its quantity can be fatal (Erickson 2005). It 
paralyzes the muscles by blocking nicotinic acetylcholine 
receptors on the post synaptic membrane of the neuromus-
cular junction. Eventually, paralysis moves into the respira-
tory system and subsequently the death occurs by asphyxia-
ation (Schep et al. 2009). Lobeline, another piperidine 
alkaloid, is found mainly in members of the genus Lobelia. 
The alkaloid is used as a drug assistant to stop smoking and 
works through the stimulation of the release of dopamine 
and by blocking the reuptake of dopamine and serotonin 
(Dwoskin and Crooks 2002). 
 
 vi) Quinoline alkaloids 
 
The quinoline alkaloids have quinoline rings in their chemi-
cal structure, e.g. quinine. It isolated from cinchona bark 
and has been used in treatment of malaria for centuries 
(PrayGod et al. 2008). It also has antipyretic properties. Its 
mechanism of action is by prevention of hemozoin biocrys-
tallization inside the plasmodium, thus, causing a buildup of 
cytotoxic heme groups (Jones et al. 2007). 
 
vii) Iso-quinoline alkaloids 
 
The iso-quinoline alkaloids contain an iso-quinoline ring in 
their structure, e.g. papaverine found in Papaver somnife-

14



Role of mineral elements in medicinal plants. Mishra et al. 

 

rum (Shukla et al. 2010). Papaverine is a compound used in 
treatment of spasms in gastro-intestinal tract and bile ducts 
as well as a it is used as vasodilator (Mishra et al. 2010a). It 
acts by inhibition of a phosphodiesterase, which is responsi-
ble for degradation of cyclic AMP, a common second mes-
senger in the cell (Mishra et al. 2010b). 

 
viii) Tropane alkaloids 
 
Tropane alkaloids are alkaloids with nitrogenous bicyclic 
rings. The tropane classof alkaloids are found mainly in 
Solanaceae family containing the anticholinergic drugs 
hyoscyamine and scopolamine. Scopolamine isolated from 
Duboisia and is commonly used as transdermal patch to 
combat motion sickness (Chan et al. 2006; Patel and Ezzo 
2009). Cocaine is yet another famous tropane alkaloid. It is 
isolated from the coca plant and works as a stimulant and 
appetite suppressant by blocking dopamine reuptake in the 
brain. Cocaine was actually marketed as a children’s tooth-
ache medicine in the early 1900s (Dickerson and Janda 
2005; Favrod-Coune and Broers 2010). 

Atropine, which is isolated from Atropa belladonna 
(deadly nightshade), is another example of tropane alka-
loids. Atropine lowers the activity of all the muscles and 
glands controlled by parasympathic nervous system, as it is 
a competitive inhibitor for muscarinic acetylcholine recep-
tors in synapses of parasympathetic nervous system (Takeda 
et al. 2003). 

 
Alkaloids with exocyclic N and aliphatic amines 
 
In their chemical structure, these alkaloids have N outside 
the cyclic structures (Trease and Evans 1959; Joule and 
Mills 2000). This category is further subdivided into the fol-
lowing three main categories: 
 
1) Erythrophleum bases 
 
Classification of these alkaloids is based on the appearance 
of an aminoethanol group. An example of this category of 
alkaloides is cassaine, which is a cardiotoxic alkaloid that 
can cause anorexia, defective vision, increased heart sounds, 
and dyspnea (Phoenix et al. 2008). 
 
2) Phenylalkylamines 
 
The main structural component of these alkaloids is an 
alkylamine attached with two phenyl group (Awasthi and 
Yadav 2007). This group tends to have hallucinogenic pro-
perties and is, therefore, one of the major groups in psyche-
delic drugs. Most of these psychedelic drugs are used for 
recreational purposes. For example, mescaline, a phenyl-
alkylamine, is more commonly known as ecstasy. Alkaloids 
from this category have also been used in order to block 
voltage-gated Ca channels by binding within the intracel-
lular mouth of ion conducting pore. There are several natu-
rally occurring phenylalkylamines in human body such as 
dihydroxyphenylalanine (DOPA), dopamine, tyrosine, and 
adrenaline. Some of these naturally occurring molecules are 
used as protein building blocks (amino acids) and also for 
the execution of motive, cognitive, and neuroendocrinic 
functions. Several of the molecules like dopamine are also 
involved in pathogenesis of multiple neuropsychiatric 
diseases such as Parkinson’s disease, Alzheimer’s disease, 
and schizophrenia. The Ca channel blocking molecules have 
antiarrhythmic and antihypertensive properties and can be 
highly toxic if they bind too strongly to the ion channel 
preventing the inflow of Ca for an extended period of time 
(Awasthi and Yadav 2007). 

 
3) Alkaloids having an exocyclic N 
 
Alkaloids like colchicine have an exocyclic N, are normally 
more biogenetically related to alkaloids with an isoquino-
line group. Colchicine itself inhibits the polymerization of 

tubulin protein, which is required for mitosis; so it can be 
used as an antitumor drug, as cancer cells rapidly go 
through mitosis (Pelletier 1999). 
 
Putrescine, spermidine and spermine alkaloids 
 
Putrescine, spermidine and spermine bases are part of a 
group of natural products known as biogenic amines; thus, 
they are not considered as alkaloids (Karovicova and Kohaj-
dova 2005). This class of alkaloids arises because they are 
derived using these three bases as building blocks. A classic 
example from the spermidine sub group is Oncinotine, the 
main alkaloid of Oncinotis nitida (Apocynaceae). 
 
Diterpene and steroidal alkaloids 
 
Terpenes are another form of naturally occurring products 
that are derived from isoprene subunits (Mishra et al. 2009). 
Terpene is a 10-C molecule; thus, diterpenes are two ter-
penes put together creating twenty C molecules. Although 
terpenes do not have a Nous base within their isoprene 
subunits, basic N can be added to the molecule, classifying 
certain terpenes as alkaloids. The diterpenes can be subcate-
gorized into the following two major groups: 
 
1) Diterpenes with a 20-C skeleton 
 
These alkaloids belong to several plant families such as 
Rubunculaceae, Garryaceae, Compositae, and Rosaceae 
(Mishra et al. 2009). The 20-C backbone can be arranged 
into two major forms: 

A) Veatchine skeleton (e.g. veatchine, cuauchichicine, 
and songorine); 

B) Atisine skeleton: This arrangement differs from the 
veatchine skeleton by having a six-membered ring instead 
of a five-membered ring, e.g. atisine, atidine, hetisine, igna-
vine, and kobusine. 

 
2) Diterpenes with a 19-C skeleton 
 
The diterpenes, which have lost a C molecule during their 
synthesis, belong to this group. They are most commonly 
found in Aconitum and Delphinium species (Diaz et al. 
2005; Forgo et al. 2011). Due to the 20-C backbone, diter-
pene skeletons have two different arrangements: 

A) Lycoctonine skeleton, e.g. aconotine, hypaconitine, 
delphinine, and lycoctonine; 

B) Heteratisine skeleton: This arrangement differs from 
lycoctonine due to addition of an O functional group to pro- 
duce a lactone. 

 
Peptide alkaloids 
 
These alkaloids are derived from short peptide chains or the 
chains, which resemble with the peptides. Most of these 
alkaloids have already been classified under previous cate-
gories as many alkaloids are derived from amino acids. The 
alkaloids considered in this category contain an obvious 
peptide backbone. For example, celenamide-E is a tripep-
tide alkaloid in Patagonian sponge, Cliona chilensis (Sugu-
maran and Robinson 2010). This molecule shows antibiotic 
activity against Gram-negative bacteria. 

The chemical classification of alkaloids is universally 
adapted and depends on the type of heterocyclic ring 
structure present. It is usual to classify alkaloids according 
to amino acids (or their derivatives) from which they arise. 
Thus the most important classes are derived from the amino 
acids ornithine and lysine; or those derived from aromatic 
amino acids phenylalanine and tyrosine; or those derived 
from tryptophan and a moiety of mavelonoid origin. Besides, 
a number of such compounds are also derived from anthra-
nilic acid or from nicotinic acid. 
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1) Alkaloids derived from lysine 
 
Such alkaloids, e.g. pelletierine and pseudopelletierine, are 
found in the bark of pomegranate trees (Khare 2004). 
Another example is sedamine that is one of the 600 alka-
loids isolated from the genus Sedum, a common garden 
plant, while halosaline, a minor constituent, is obtained 
from Haloxyon salicornicum (Cossy et al. 2002). Lycopo-
dine is obtained from various species of the moss Lyco-
poodium. 

The comparison of structures of pelleterine, sedamine, 
and halosaline suggests that each of these molecules arises 
from the reaction of a common intermediate with a different 
�-ketoacid. The most likely intermediate is thought to be 
�1-piperideine. 

 
2) Alkaloids derived from phenylalanine and tyrosine 
(benzylisoquinoline) 
 
The simplest members of this group of alkaloids are com-
pounds that contain �-phenylethylamine, C6H5CH2CH2NH2, 
skeleton, e.g., morphine, codeine, thebaine, etc. (Ziegler et 
al. 2005). 

 
3) Alkaloids derived from tryptophan 
 
These are quinine type alkaloids derived from tryptophan. 
Quinine skeleton includes atoms derived from non-amino 
acid sources, in particular the terpene geraniol. However, 
feeding experiments, using isotopically labelled geraniol 
and tryptophan, showed involvement of molecular rear-
rangements (Dewick 2011). 

 
BIOSYNTHESIS OF ALKALOIDS 
 
Amino acid, the building blocks of alkaloids, are modified 
by decarboxylation, aldol condensation, reductive amina-
tion or methylation. Successive alterations using these rela-
tively few biosynthetic transformations lead to formation of 
specific alkaloids. 

 
Biosynthesis of terpenoid indole alkaloids 
 
It begins with the conversion of tryptophan to tryptamine 
and secologanin and ends with the synthesis of terpene 
indole alkaloids (Facchini 2001). 
 
Biosynthsis of benzylisoquinoline alkaloids (BIA) 
 
The BIA biosynthesis begins with decarboxylations, ortho-
hydroxylations, and deaminations of tyrosine that convert it 
into both dopamine and 4-hydroxy phenylacetaldehyde 
(Rueffer and Zenk 1987; Facchini 2001). 

 
Biosynthesis of tropane alkaloids 
 
Biosynthesis of tropane alkaloids starts with ornitine and 
finally ends with the synthesis of tropane alkaloid (Facchini 
2001). 
 
Biosynthesis of purine alkaloids 
 
Purine alkaloids, such as caffeine, theobromine, and acrine, 
are widely distributed in plant kingdom. Recent metabolic 
studies on tea and coffee have elucidated the biosynthesis of 
caffeine. The major route begins with xanthosine and pro-
ceeds through three N-methylations via 7-methylxanthosine, 
7-methylxanthine and theobromine (Suzuki et al. 1992; 
Ashihara et al. 1996, 1997) although a number of minor 
pathways have also been suggested (Kato et al. 1996; 
Schulthess et al. 1996; Facchini 2001). 

 
 
 
 

REGULATORY ROLE OF MINERALS IN 
ALKALOIDS 
 
An alkaloid is a naturally occurring nitrogenous organic 
molecule that has pharmacological effect on humans and 
other animals. Being a nitrogenous compound, availability 
of N directly influences the level of alkaloids (Demeyer and 
Dejaegere 1998). Biosynthesis of alkaloids, although con-
trolled genetically, could be affected by different environ-
mental factors, such as light, high temperature, stress and 
nutrients (Andrijany et al. 1998; Chatterjee et al. 1988; 
Lovkov and Buzuk 1998). The mode of action of various 
groups of alkaloids varies depending on the level of N 
available. Several decades back, Mothes (1928) conducted a 
study to look into the effect of different levels of added N 
on the plant of Nicotiana and noticed that initially alkaloid 
content increased rapidly upon addition of first level of N 
but additional level of N decreased the total amount of 
alkaloids. Previously it was noted by geneticist and chemist 
that type of fertilizer does not affect alkaloids. Later on, 
Marten et al. (1974) studied that ammonium source of N 
caused greater increase in total alkaloid content than did a 
nitrate source in Canary grass. However, later on Pavlikova 
and Tlustos (1994) confirmed the findings of Marten et al. 
(1974). Similar study was also conducted by Yadav et al. 
(1984) on poppy and suggested three important factors, i.e. 
supply, form and date of application of N in the form of 
fertilizer, play decisive role in alkaloid production. They 
suggested that application of N increased the alkaloid con-
tent in the strains in which alkaloid content was already 
high. Similarly in Catharanthus, N in NO3 form enhanced 
the alkaloid content up to 50% (Miranda-Ham et al. 1996), 
while application of a mixture of NO3 and NH4 decreased 
the alkaloids by 45%. It was reported in opium poppy that 
direct dose of N as well as the split doses not only affected 
the alkaloid concentration but also affected the habits of 
poppy and seed yield (Kharwara et al. 1988; Jain et al. 
1990; Pavlikova and Tlustos 1994). 

Not only N, other macro- and microbiogenous elements 
also modulate the formation and accumulation of isoquino-
line (papaverine) alkaloids in opium poppy (Lovkov et al. 
2006). In their experiment, they took 12 elements and clus-
tered them into three groups. Group I included molybdenum, 
cobolt, tungsten, and Cr, group II had Cu and nickle and 
group III had boron, Fe, vanadium, Mn, zinc and Ca. Group 
1 elements stimulated the formation of isoquinoline alka-
loids. The elements of group III inhibited the formation and 
accumulation of alkaloids at various concentrations. Mo, Cr, 
and W has probably related to the inhibition of nonspecific 
phosphatases, which contributed to a more pronounced ret-
ention of phosphorylated intermediates during the biosyn-
thesis of amino acids, precursors of alkaloids (tyrosine and 
phenylalanine) and other intermediate substances. 

Co has stimulatory effect on isoquinoline alkaloids by 
activating the biosynthesis enzymes of the initial stage of 
aromatic amino acids, including 3-deoxy-D-arabino-
heptulosonate-7-phosphate synthase (DAHP synthase, EC 
2.5.1.54) and 3-dehydroquinate synthase. Unlike Co-depen-
dent isoform, Mn dependent DAHP synthase is located in 
the plastids and are characterized by feedback inhibition. 
The Mn blocks the formation of precursor amino acids by 
feedback mechanism, which results in the inhibition of 
isoquinoline accumulation. The difference in the effect of 
Co and Mn may be related not only to the regulatory acti-
vity of DAHP synthase isoforms, but also to the variations 
in intracellular localization of the isoforms (cytosol and 
plastids, respectively). Lovkov et al. (2006), in an experi-
ment on opium poppy with glyphosphate, showed the effect 
of Co. The glyphosphate specifically inhibits two enzymes 
in the biosynthesis of aromatic amino acids and Co-depen-
dent DAHP synthase, but does affect the Mn-dependent 
isoform. Iron (Fe) has inhibitory effect, which provides the 
evidence for the hypothesis that Co has a role in formation 
and accumulation of isoquinolines. Fe at various concentra-
tions suppresses different steps of biosynthesis, but does not 
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have an effect on the growth and formation of seedlings. 
The antagonistic relationship between Co and Fe suggested 
that effect of Fe is realized via the displacement and sub-
stitution of Co in the enzymes catalyzing the biosynthesis of 
primary alkaloid precursors (aromatic amino acids). 

Another microelement Cu also has stimulatory effect on 
isoquinoline alkaloids by activating Cu-containing enzyme, 
polyphenol oxidase located in the plastids and alkaloid ac-
cumulating vesicles of latex in the plant cell. This enzyme 
catalyzes the major early stages of biosynthesis of isoqui-
noline alkaloids, including tyrosine hydroxylation (with the 
formation of DOPA), transformation of 4-hydroxyphenyl-
acetaldehyde into 3,4-dihydroxyphenyl-acetaldehyde, and 
conversion of N-methylcoclaurine to 3-hydroxy-N-methyl-
coclaurine. Vanadium and Ca is associated with the inhib-
ition of isoquinoline synthesis by inhibiting proton ATPases, 
which determines the transmembrane electrochemical gra-
dient. Vanadium inhibits the active transport by suppressing 
the supply of energy required for isoquinoline synthesis. Ca 
strongly inhibits the biosynthesis of isoquinoline alkaloid of 
Papaver somniferum (Buzuk and Lovkov 1985). Ca modu-
lates the passive transport by stabilizing membranes and 
decreasing the availability of substrates for the enzymes. 
Due to high degree of compartmentalization of alkaloid bio-
synthesis and the decreased active transport, passive trans-
port has a major role in the formation and accumulation of 
isoquinolines. The element boron stimulates consumption 
of N, which increases synthesis of various N-containing 
compounds (e.g. amino acids). The above changes have a 
positive impact on alkaloid formation in opium poppy. In 
the poppy capsules, there is positive relationship between 
morphine and Cd and the negative one between papaverine 
and zinc and codeine and zinc (Lachman et al. 2006). It was 
also found that atmospheric CO2 influences the alkaloid 
content in the case of morphine, codeine nascopine and 
papaverine. Morphine had maximum response to CO2 and 
as a fraction in total alkaloid percentage (Ziska et al. 2005, 
2008). 

In Catharanthus, Zn and N play an important role in the 
synthesis of alkaloids. Zn is indispensable for the synthesis 
of tryptophan, which is the precursor of indole alkaloids; 
whereas N is a constituent of the alkaloids. It was reported 
previously that K had inhibitory role in the synthesis of 
alkaloids. Depletion of K usually results in an increase in 
the percentage of alkaloids, while the total percentage of 
alkaloids is decreased sometimes. In Lupins, K-depleted 
plants had a higher alkaloid level (Mironenko 1975). Gentry 
et al. (1969) found that P and K together greatly reduced the 
perloline biosynthesis in tall Festuca arundinaea trees, 
whereas N increased the perloline biosynthesis therein. 
Other element such as P had significant positive effect on 
the alkaloid production (Mironenko 1975; Dovrat and Gold-
schmidt 1978; Chandra 1981), while there was a negative 
effect in the case of Trifolium repens (Jose et al. 2000). Ca 
activates the accumulation of tropane and indole alkaloids 
in Hyoscyanus niger and Catharanthus roseus. 

In Datura stramonium, high amount of Co decreases 
the yield of all plant parts and alkaloid content of leaves; 
while in roots, alkaloid content rose with increasing Co 
rates (Tammaru 1980). However, in Atropa belladonna, 
there was a signi�cant relationship between Co supply and 
alkaloid content (Petrishek et al. 1983). The level of NO3

- 

decreased the alkaloid content in young plants of D. stra-
monium due to its association with vegetative growth. How-
ever, increase in N2 uptake increases alkaloids in mature 
plants due to its association with generative parts (Demeyer 
and Dejaegere 1998). In mature plant, N2 increased alkaloid 
content as a result of high metabolic activity and an in-
crease in amino acid. In Ricinus communis, the content of 
high NH4NO3 showed an increase in ricine concentration. 

In Colchicum autumnale there is significantly positive 
effect of Co and Ca elements on the alkaloid synthesis 
(Poutaraud and Girardin 2005). A sufficient supply of N, K, 
Mg, B, Mo, Zn, Fe and Cu increased the galanthamine con-
tent in Leucojum aestivum. 

Tso et al. (1973) tested the effect of 54 rare elements on 
nicotine level of Nicotiana tabacum L. Be, Cu, Pd, Pt, and 
Sm increased the nicotine yield over 25%, whereas Bi, Co, 
Ho, Pb, Ni, Rb, Ag, TI, Sn, U V and Zr decreased the nico-
tine yield. The elements Cs, Er, Li, Rh, Ru, Se, Sr, Ti, and 
Yb possibly increased the nicotine level less than 25%, 
whereas As, Ce, Cr, Dy, Gd, I, Mo, Nd, Re, Ta, and Th 
possibly decreased it. Other elements including Al, Ge, Au, 
Hf, In, Ir, La, Lu, Hg, Os, Pr, Sc, Te, Tb, Tm, W, and Zn 
showed no significant effects on nicotine level. This in-
crease in nicotine level in tobacco plants was as a result of 
the interaction of the elements applied together. 

 
CONCLUSION 
 
Minerals have a diversified role in medicinal plant meta-
bolism. The regulations of metabolic activities remain under 
strict control of mineral nutrients that are solely provided by 
soil. Severity or scarcity of minerals causes multifarious 
effects on plant metabolism. The mineral nutrients are clas-
sified as macro and micronutrients depending upon their 
requirement to the plants. Among different macro elements, 
N is a major constituent of protoplasm, chlorophyll, amino 
acids, amides and alkaloids.  P is essential to the vital 
growth processes in the plants, Ca and Mg are the consti-
tuents of cell wall, chlorophyll as carrier of P element, K is 
used in the formation of carbohydrates and proteins and S 
occur as a constituent of amino acids. Micro elements, re-
quired for plant metabolism, include Fe and Mn for chloro-
phyll formation, boron as a catalyst, and Zn and Fe as a co-
factor in some enzymes. Co is required for N fixation in 
lower plants, while Na as a replacer of K in the regulation 
of stomatal opening and closing. Though minerals have 
various regulatory roles in different metabolic processes 
occurring in plants, the present chapter deals only with their 
roles in photosynthesis, respiration, protein synthesis, ion 
uptake and alkaloid biosynthesis, especially in medicinal 
plants. Both macro and micro elements play major roles in 
catabolic and anabolic activities in the processes of photo-
synthesis and respiration, working as a driving force of 
plant life cycle. Proteins, which are required for structural 
integrity of plants, are constituted by twenty amino acids; 
they are also solely dependent on minerals for their struc-
ture formation, action and behavior. Different ionic forms of 
minerals also play regulatory roles in translocation of vari-
ous solutes and ionic uptake occurring through the biolo-
gical membranes. Apart from being involved in physiolo-
gical activities, different minerals also have regulatory roles 
in alkaloid biosynthesis in different plants. Minerals in the 
form of fertilizers directly enhance the alkaloid content in 
most medicinal plants. A number of studies have been 
carried out regarding various aspects of plant metabolism 
and interactions of different minerals on various plants, but 
still a gap in literature exists with respect to specific roles of 
minerals in medicinal and aromatic plants, which needs 
further researches to be conducted in depth. 
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