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ABSTRACT 
The protective effect of silicon against cadmium (Cd) toxicity in maize seedlings was investigated. Cd is a strong environmental pollutant 
that negatively affects plant growth. The seedlings were treated with Cd at 100 �M for 9 days. The application of 50, 100 and 150 mM 
silicon was able to alleviate Cd toxicity and improve growth parameters through some mechanisms. For example, shoot and root fresh 
weight increased significantly from 2.47 and 1.05 g per pot to 3.11 and 1.61 g per pot, respectively. The alleviation showed by silicon 
adding to Cd treatment seedlings through declining in lipid peroxidation, proline and Cd uptake and rising in chlorophyll, carotenoid, 
shoot and root fresh and dry weight and relative water content compared to Cd-stressed seedlings, significantly. 
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INTRODUCTION 
 
Cadmium (Cd) is a non-essential element that severely 
inhibits plant growth. Its uptake and accumulation in plants 
poses a serious health threat to humans and living cells via 
the food chain (Shah and Dubey 1998; Stohs et al. 2000). 
Harmful effects of Cd might be explained by its ability to 
inactivate enzymes possibly through reaction with the SH-
groups of proteins (Gouia et al. 2000). This highly toxic 
heavy metal is associated with industrial processes such as 
metal plating and the production of nickel-cadmium bat-
teries, pigments, plastics, and other synthetics. 

Cd treatments inhibited the net photosynthetic rate of 
peanut (Arachis hypogaea) plants due to a reduction in sto-
matal conductance and photosynthetic pigment content, as 
well as alterations in leaf structure (Shi and Cai 2008). Cd 
toxicity in cells disrupts the photosynthesis electron chain 
in PSII, decreasing enzymatic and non-enzymatic antioxi-
dants (Kalaji and Loboda 2007). In addition, it alters en-
zyme structure by interaction with sulphydryl groups or by 
replacement of metals in metaloproteins, lipid peroxidation 
and membrane damage, inhibiting ATPase activity, disrup-
tion of channels and transporters, induction of reactive oxy-
gen species (ROS), all the effects of Cd toxicity (Asada and 
Takashi 1987; Mohsenzadeh et al. 2011). Plants exposed to 
Cd stress show significantly variation in electron transport 
in both chloroplasts and mitochondria (Prasad et al. 2001; 
Shah et al. 2001; Zhang et al. 2005). The uptake of Cd ions 
seems to be in competition for the same transmembrane car-
riers with cation nutrients (Korshunova et al. 1999; Con-
nolly et al. 2002; Bernard et al. 2004). 

Silicon (Si) is the second most abundant element on the 
surface of the earth and the attempts to associate Si with 
metabolic or physiological activities have been inconclusive 
(Epstein 1994). Although Si has not been classified as an 
essential element, it has been shown to be beneficial for the 
plant growth and in alleviation of toxicity stress (Liang et al. 
1994; Epstein 1999; Oliva et al. 2011; Shi et al. 2011). 

The main objective of the present study was to inves-
tigate the effect of Cd in relation to the influence of Si on 
growth, some biochemical responses and uptake of maize 
seedlings. 

MATERIALS AND METHODS 
 
Plant materials and treatments 
 
Seeds of Zea mays (var KSC.704), which is cultivated in Iran and 
has good growth and harvest, were obtained from the agricultural 
research center and surface sterilized by using 20-min incubation 
in 5% (w/v) sodium hypochlorite. After three washes with distilled 
water, seeds were germinated for 48 h at 24°C and then transferred 
to pots containing a mixture of sand and perlite (1/1, v/v) and 
irrigated with nutrient solution (as mgl-1; KNO3, 1000; Ca(H2PO4)2, 
250; MgSO4·7H2O, 250; H3BO3, 2.3; MnCl2·4H2O, 1.8; 
ZnSO4·7H2O, 0.22; CuSO4·5H2O, 0.08; H2MoO4, 0.02; FeEDTA, 
6.92). The seedlings were grown for 6 days in a greenhouse in 
which growth conditions were 16 h light (maximum intensity of 
full sunlight was about 2000 �mol m-2 s-1) and 8 h dark, an ave-
rage minimum temperature of 18°C and an average maximum 
temperature of 28°C, the mean humidity of 60%. Then heavy 
metal treatment was carrying out during 9 days. Cadmium 
(CdN2O6) was applied in solution at concentration of 100 �M. 
Silicon were applied at 50, 100, 150 mM concentrations as sodium 
metasilicate (Na2SiO3·9H2O). The fully developed leaf from 14 
days old seedlings was used as a source material for biochemical 
analysis and uptake measurement. 

 
Lipid peroxydation measurement 
 
Lipid peroxidation was assayed using 0.3 g of leaf tissue after 
homogenization in 10 ml of 0.1% (w/v) trichloroacetic acid (TCA). 
Then the mixture was centrifuged at 10,000 × g for 15 min and 
vortexed 1 ml of the supernatant with 4 ml of 20% (w/v) TCA 
containing 0.5% (w/v) 2-thiobarbituric acid (TBA). The solution 
was heated for 30 min at 95°C. The samples were cooled on ice 
for 5 min and then recentrifuged for 10 min at 10,000 × g. The 
absorbance of the samples was measured at 535 nm and corrected 
for non-specific turbidity by subtracting the absorbance at 600 nm 
(Heath and Packer 1968). The level of lipid peroxidation products 
in roots and shoots was expressed as �mol of malondialdehyde 
(MDA) per g-1 FW. The MDA concentration was calculated using 
an extinction coefficient of 1.56 × 105 M-1 cm-1 (Lozano-Rodrí-
guez 1997). 
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Proline, pigments, and dry weight measurment 
 
Free proline in 0.1 g of leaf samples were measured according to 
Bates (1973). Leaf chlorophyll and cartenoid were extracted by 
acetone and measured spectrophotometrically using Arnon’s equa-
tion (Arnon 1959). For dry weight determination, samples were 
oven dried at 70°C for 72 h and then weighed. 

 
Relative water content measurement 
 
The percentage of relative water content (RWC) was calculated as: 
 
RWC = (Wi � Wd)/ (Wf � Wd) × 100 

 
Variables were the fresh weight of harvested leaves, which 

were cut to 1-cm segments (Wi); the weight of leaf segments 
soaked in water at 4°C in the dark for 24 h (Wf); and dry weight of 
the segments baked at 80°C for 24 h (Wd). 

 
Cadmium uptake 
 
For determination of Cd the harvested plant samples were rinsed 
with deionized water, oven dried at 70°C for 48 h. The dried mate-
rial was ashed at 550°C for 24 h. The ash residue was incubated 
with 65% HNO3 for 4 h. Then, HNO3 was added until a clear solu-
tion was obtained. Cd was quantified using an atomic absorption 
spectrophotometer (Varian, spectra AA-220 model) at 228.8 nm 
according to Wickliff method (1980). 
 
Statistical analysis and computations 
 
All experiment set-ups were randomized complete block with 
three replicates each. Raw data were imported to Microsoft Excel 
program for calculations and graphical representation. SPSS ver-
sion 17.0 was used for analysis of variance and comparison of 
means by Duncan’s multiple range test at � � 0.05. 
 
RESULTS 
 
Effects on MDA shoot content 
 
Exposure of seedlings to 100 �M Cd increased 70% of 
MDA shoot content. Treatment of maize stressed seedling 
with Si at three concentrations of 50, 100, 150 mM de-
creased significantly (P < 0.05) MDA shoot content by 
about 16.5, 36.2, and 55.22%, respectively, in comparison 
with cadmium-stressed seedlings. The MDA shoot contents 
of seedlings without Cd treatment and with 50, 100, 150 
mM Si were similar (Fig. 1). 

 
Effects on proline and pigments content 
 
Proline accumulated in Cd treated seedlings and increased 
to 55.2%. However, exposure of seedlings to 50, 100, 150 
mM Si decreased significantly (P < 0.05) free proline by 
about 33.7, 44.8 and 50.5% as compared to Cd-stressed 
seedlings. The proline contents of seedlings without Cd 
treatment and with 50, 100, 150 mM Si were similar (Fig. 
2). 

Cd treatment reduced 41.2 and 29.5% the total chloro-
phyll and carotenoid content respectively, in leaves seed-
lings compared to untreated seedlings. It was observed that 
exposure to 50, 100, 150 mM Si increased significantly (P 
< 0.05) 18.3, 30, and 34.1% the total chlorophyll and 19.36, 
27.23, and 30.18% the carotenoid respectively, as compared 
to cadmium-stressed seedlings. Pigments content of Si-
treated seedlings exposed to 50, 100, 150 mM Si increased 
by about 17.5, 19.9, and 20.3% in chlorophyll and 25.3, 
28.5, 28.7% in carotenoid in comparison to control (Figs. 3, 
4). 

 
 
 
 
 

Fig. 1 Effects of Si in the presence and absence of Cd (100 �M) on 
maize seedlings MDA content. Values represent mean ± standard error 
(SE). 

Fig. 2 Effects of Si in the presence and absence of Cd (100 �M) on 
maize seedlings proline content. Values represent mean ± standard error 
(SE). 

Fig. 3 Effects of Si in the presence and absence of Cd (100 �M) on 
maize seedlings chlorophyll content. Values represent mean ± standard 
error (SE). 

Fig. 4 Effects of Si in the presence and absence of Cd (100 �M) on 
maize seedlings carotenoid content. Values represent mean ± standard 
error (SE). 
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Effects on root and shoot fresh and dry weight 
and RWC 
 
As Figs. 5 to 8 shows, exposures of maize seedlings to 100 
�M Cd resulted in dramatic decrease in both root and shoot 
fresh weight (40 and 21%, respectively) and root and shoot 
dry weight (44 and 28.8%, respectively), all significant at P 
< 0.05. In addition, three concentrations of Si treatment in-
creased significantly (P < 0.05) the root and shoot dry and 
fresh weight. 

Cd treatments reduced 4% of the RWC compared to the 
control (Fig. 9). However, Si treatment at concentrations of 
50, 100, 150 mM increased RWC percent (1.5, 2, and 2.8%, 
respectively) compared to cadmium-stressed seedlings. It 
was observed that exposure of maize seedlings to 50, 100, 
150 mM Si, significantly increased shoot and root fresh 
weight and RWC as compared to non-silicon treated seed-
lings (Fig. 5-9). 

 
Effects on cadmium uptake 
 
Cd concentration of root and shoot after 100 �M Cd treat-
ment were 0.37 and 0.078 mg/gDW, respectively. Treatment 
with 50, 100, 150 mM Si decrease 42.2, 61.4 and 83.1% of 
Cd concentration in root, significantly (P < 0.05) and 56.8, 
67 and 86.8% in shoot compared to non- treated seedlings 
(Fig. 10). 

 
DISCUSSION 
 
As the results showed, Cd influences some physiological 
parameters but Si can alleviate the toxicity of Cd and 
reduced Cd uptake in maize. These were reported by other 
investigations (Liang et al. 2005; Cunha et al. 2008). 

Based on the MDA levels in the present study, lipid 
peroxidation of leaves increased with the Cd addition and 
then decreased after intraction with Si. An enhanced content 
of MDA in leaves of maize exposed to Cd indicates that the 
heavy metal may have caused oxidative stress and mem-
brane damage (Lozano-Rodríguez et al. 1997; Cui and 
Wang 2006) and Si can alleviate these stress and damage. 

Increasing of free proline under heavy metal stress have 
been reported by others (Schat et al. 2006; Choudhary et al. 
2007). Proline has been attributed to up-regulation of �1-
pyrroline-5-carboxylate synthetase encoding gene expres-
sion (Hong et al. 2000) and decrease in proline consump-
tion (Raymond and Smirnoff 2002). Proline accumulation 
may serve as a means of osmotic adjustment and storing 
carbon and nitrogen when stress leads to slower growth 
(Bohnert and Jensen 1996). Increase in both proline and 
MDA content with increasing heavy metal concentration is 
indicative of a correlation between free radical generation 
and proline accumulation (Choudhary et al. 2007). 

The present results showed that Cd toxicity decreased 
the total chlorophyll and carotenoid contents of the leaves 
of maize seedlings as the other reports in Brassica napus 
(Larsson et al. 1998; Baryla et al. 2001), and Azolla imbri-
cata (Dai et al. 2006). Decreased chlorophyll content asso-
ciated with heavy metal stress may be the result of inhibi-
tion of the enzymes responsible for chlorophyll biosynthesis. 
Cd was reported to affect chlorophyll biosynthesis and in-
hibit protochlorophyll reductase and aminolevulinic acid 
synthesis (Stobart et al. 1985). At lower Cd concentrations, 
an increase in proline, protein and sugar was observed in 
Duckweed plants (Lemna polyrrhiza L.) but at higher con-
centrations (above 30 mg/l) their decrease was noticed 
(John et al. 2008). Cd decreased the chlorophyll content and 
inhibited the growth of roots and shoots of rice seedlings 
(Huang et al. 2006) and Si alleviate the toxic effects of Cd 
in rice (Nwugo and Huerta 2008). 

This study showed that application of Si could improve 
the pigments and water status of Cd-stressed maize seed-
lings. In addition, Si enhanced Cd tolerance in maize seed-
lings by improvement of root and shoots dry weight and 
reduction in root and shoot cadmium content (Liang et al. 

2005; Cunha et al. 2008). Accumulation of Cd in plant tis-
sues can be toxic at a cellular level limiting growth and 
development. Prevention of Cd uptake by plant roots is, 
therefore, an important strategy to minimize the adverse 
biological effects of Cd (McLauglin et al. 1999). Cd stress 
decreased RWC% in maize leaves as in other plant (Barcelo 
et al. 1986) and Si increased RWC% in Cd treatment maize 
seedlings. 

One reasons for Si alleviation of Cd toxicity is depo-
sition of Si in the several parts of plant especially in roots, 
reduces apoplastic bypass flow and provides binding sites 
for metals, resulting in decreased uptake and translocation 
of toxic metals and salts from the roots to the shoots. The 
other proposed mechanism has been associated with an in-

Fig. 5 Effects of Si in the presence and absence of Cd (100 �M) on 
maize seedlings shoot fresh weight. Values represent mean ± standard 
error (SE). 

Fig. 6 Effects of Si in the presence and absence of Cd (100 �M) on 
maize seedlings shoot dry weight. Values represent mean ± standard 
error (SE). 

Fig. 7 Effects of Si in the presence and absence of Cd (100 �M) on 
maize seedlings root fresh weight. Values represent mean ± standard 
error (SE). 
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crease in antioxidant defense abilities (Liang et al. 2003; 
Zhu et al. 2004; Gong et al. 2005). In addition to the role of 
Si alleviation in this study, the results showed that Si has 
positive effects on some growth parameters. Si can improve 
light interception by keeping leaves erect and increase 
photosynthesis in rice (Ma and Yamaji 2006). It has been 
reported that Si promotes cell elongation but not cell divi-
sion, probably because of Si-enhanced extensibility of the 
cell wall (Hossain et al. 2002). It was found that Si in-
creased the extensibility of the cell wall in the growing zone 
and decreased cell-wall extensibility in the basal zone of 
isolated stellar tissues covered by endodermal inner tangen-
tial walls. In the roots of sorghum, implying that Si has a 

role in enhancing root elongation and in protecting the stele 
as a mechanical barrier by hardening the cell wall of the 
stele and endodermal tissues (Hattori et al. 2003; Lux et al. 
2003). The addition of 1 mM Si in high-Cu nutrient solu-
tions significantly improved plant growth and reduced 
water loss preventing plant death related to Cu-excess 
(Oliva et al. 2011). The key mechanisms of Si-mediated 
alleviation of abiotic stresses in higher plants include: (1) 
stimulation of antioxidant systems in plants, (2) complexa-
tion or co-precipitation of toxic metal ions with Si, (3) im-
mobilization of toxic metal ions in growth media, (4) up-
take processes, and (5) compartmentation of metal ions 
within plants (Liang et al. 2007). 
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