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ABSTRACT 
Catalase (CAT) is an enzyme that decomposes hydrogen peroxide with high velocity. Under environmental stress, CAT plays an important 
role in the disposal of hydrogen peroxide. Spillage of crude oil into the soil can damage plants and microorganisms. Oil contamination in 
soil may act as a stressful element and cause damage to plants. In this experiment, the effect of crude oil-contaminated soil (5% w/w) on 
root of lentil (Lens culinaris) CAT activity and subcellular changes was studied. CAT activity was measured at different pHs and 
temperatures. The optimum pH was 10 and maximum activity was observed at 30°C in treated and control samples. Both Km and Vmax 
changed in treated samples. The Km of the enzyme was 1.13 and 1.5 mM and Vmax was 1.16 and 2 mM/min/mg protein in the treatment 
and control, respectively. After purification of CAT, SDS-PAGE of purified enzyme revealed a minor difference between the molecular 
weight of the enzyme in treated samples and the control, suggesting that a CAT isoenzyme was induced in treated samples relative to the 
control. 
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INTRODUCTION 
 
Lentil (Lens culinaris) belongs to the Leguminosae family 
and is an annual herb grown for its edible, high protein, 
flattened seeds (Erskine et al. 2009). It is one of the oldest 
cultivated crops and presumed to be native to southwestern 
Europe and temperate Asia. It is rich in protein, fiber, car-
bohydrates, B vitamins, magnesium, iron, and zinc (Savage 
1988; Adsule et al. 1989). Lentil has been used in the 
phytoremediation of heavy metals from contaminated soil. 
The concentration of mercury in lentil roots was 3.5 times 
higher than the control (Rodriguez et al. 2007). Jamal et al. 
(2002) also showed that nickel (Ni) and zinc (Zn) uptake 
from soil by lentil was enhanced in the presence of arbus-
cular mycorrhizal fungi. 

In oil-producing countries, the risk of soil contamina-
tion during oil extraction, transportation and refining is high. 
The effect of oil pollution on microorganisms and plants 
depends on the concentration and type of pollutant (Boeth-
ling and Alexander 1979; Minai-Tehrani 2008). Oil-con-
taminated soil can cause delays in germination, reduce 
shoot length and induce early chlorosis in plants (Minai-
Tehrani et al. 2007; Minai-Tehrani 2008). The macroscopic 
effect of oil contamination on plants is well studied 
although microscopic damage has not been reported. Few 
studies have been reported on the effect of crude oil on 
enzyme activity in plant cells. The effect of 5.9% crude oil-
contaminated soil on the activity of amylase and invertase 
of Vigna unguiculata (cow pea) seedling noted a 45 and 
15% reduction in invertase and amylase activity, respec-
tively (Anigboro and Tonukari 2008). Octane and benzene 
have also been shown to change the activity of glutamate 
dehydrogenase (GDH) and malate dehydrogenase (MDH) 
in Lolium perenne (ryegrass) and Medicago sativa (alfalfa). 
Benzene at 1-100 mM stimulated the activity of GDH and 
MDH by 2-3 fold in L. perenne while octane at 1-100 mM 

reduced the activity of GDH by 50 to 96% and MDH by 17 
to 46% in M. sativa (Sadunishvili et al. 2009). 

Most environmental stresses such as high energy radia-
tion, drought and pathogen attack lead to an increase in the 
production of reactive oxygen species (ROS) such as hydro-
gen peroxide (H2O2) (Bolwell 1999; Cheeseman 2007; 
Mafakheri et al. 2011). Catalase (CAT), an enzyme that 
rapidly decomposes H2O2, plays an important role in 
environmental stress (Yang and Poovaiah 2002; Cheeseman 
2007). When a plant encounters to different environmental 
stress, some ROS such as superoxide (O2-) and hydrogen 
peroxide (H2O2) are generated. ROS can damage DNA and 
oxidize polyunsaturated fatty acids and amino acids in pro-
teins. CAT degrades H2O2 and prevents cell damage by 
H2O2 (Cheeseman 2007; Mafakheri et al. 2011). 

Plants, unlike animals, have multiple CAT enzyme 
forms (or isozymes). Among the various plant species con-
taining multiple CAT isozymes are Carthamus tinctorius 
(Tayefi-Nasrabadi et al. 2011), Picea omorika (Bogdanovi� 
et al. 2007), Nicotiana tabacum (Havir and McHale 1989), 
Pinus taeda (Mullen and Gifford 1993), and sunflower 
(Helianthus annuus) (Eising et al. 1989). In maize, three 
CAT isozymes were discovered (CAT-1, CAT-2 and Cat-3), 
each expressing under different environmental conditions. 
CAT-2 was the dominant isozyme in maize when plants 
were exposed to high temperature (40°C) (Scandalios 1994).  
In the presence of a fungal toxin, cercosporin, CAT-3 levels 
increased in maize leaves (Williamson and Scandalios 
1992). 

In this report the effect of crude oil-contaminated soil 
on the root CAT activity of lentil was studied, and subcel-
lular changes were also investigated. Lentil was chosen for 
this study because it belongs to the Leguminosae, a family 
that has shown strong potential for bioremediation of oil-
contaminated soil. Other legumes such as Medicago sativa 
(alfalfa) was examined for light crude oil-contaminated soil 
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(1-10% w/w) bioremediation (Shahriari et al. 2007), Tri-
folium hirtum (rose clover), Trifolium repens (white clover) 
and Vicia villosa (hairy vetch) have also been used for bio-
remediation of 2.5% petroleum-contaminated soil (Kula-
kow et al. 2000). Lentil is also an edible plant which can be 
a model to study other nutritional plants. 

 
MATERIALS AND METHODS 
 
Chemicals 
 
All the chemicals used for buffer preparation and enzyme assay 
were of reagent grade and were purchased from Merck Co. (Darm-
stadt, Germany). 
 
Soil preparation 
 
Garden soil, which was used to cultivate the lentils, was dried and 
passed through a 4 mm mesh. Lentil (cv. ‘Ziba’) was provided by 
the Research Institute of Forests and Rangelands (R.I.F.R) of Iran. 
Light crude oil (American Petroleum Institute (API) gravity = 40) 
was obtained from the Sarkan region in the west of Iran. To obtain 
oil-contaminated soil, 500 g of soil and 5% (w/w) crude oil were 
added to a bucket. After fastening the lid of the bucket tightly, the 
bucket was shaken firmly by hand for approx. 10 min until homo-
geneity was achieved (Minai-Tehrani 2008). Ten seeds were plan-
ted in each bucket. The control was also prepared by planting 10 
seeds/bucket containing soil without oil contamination. Tap water 
was used to moisten the samples and 3 g of animal manure was 
sprinkled on top of each sample as fertilizer. Plants were grown 
under natural light behind the windows of a laboratory. The tem-
perature and relative humidity were about 30°C and 45%, respec-
tively. Control group and treated samples consisted of 7 replicates 
each. 

 
Harvesting the plant 
 
At the end of the experiment (i.e., 30 days, allowing sufficient 
time for shoots and leaves to develop, and allowing chlorosis to be 
observed in contaminated soil), the plants were removed from the 
soil and the roots were washed with water to eliminate excess soil 
adhering to the roots. Roots were separated from the shoots and 
divided to two groups. In one group, the roots from treated and 
control samples were fixed in 2.5% glutaraldehyde for a subcel-
lular study while the other group was kept at -20°C for biochemi-
cal experiments. 
 
Thin section preparation 
 
The roots of treated samples and the control group were cut into 
small pieces (0.5-0.7 mm) and fixed in 2.5% glutaraldehyde for 48 
h. These samples were then washed with 0.1 M phosphate buffer 
(pH = 7) and then immersed in 1% osmic acid for 30 min. After 
washing several times with distilled water, samples were dehy-
drated in an ethanol gradient. The specimens were embedded in 
epoxy resin and sectioned by an ultramicrotome (Reichert OMU3). 
Uranium acetate and lead citrate were used to stain the thin 
sections. Five sections were prepared from each sample. Images 
were taken by a transmission electron microscope (TEM) (Zeiss 
EM-109, Carl Zeiss GmbH, Munich, Germany). 
 
Cell-free extract preparation 
 
The roots of lentil, both control and treated samples, were cut into 
small pieces and dissolved in 0.1 M phosphate buffer (pH = 7). 
The cells were lysed by ultrasound (Sonics Vibracell VCX130PB) 
at 4°C and 20 KHz. The suspension was centrifuged at 4000 � g 
for 10 min to remove intact cells. The supernatant was used as a 
cell-free extract for the enzyme assay and purification. 

  
Enzyme assay 
 
The reaction was started by adding 100 �l of the cell-free extract 
which contained CAT (EC 1.11.1.6) to test tubes containing 0.1 M 
phosphate buffer (pH = 7) and different concentrations of H2O2 as 

substrate (0.4, 0.6, 0.8, 1, 1.2 mM). The final volume in each test 
tube was always 2.2 ml. The catalytic activity of CAT was moni-
tored by following the decrease in absorption at 240 nm using a 
UV-visible spectrophotometer (Shimadzu 1240, Shimadzu, Osaka). 
CAT activity was measured using the extinction coefficient of 43.6 
M�1 cm�1 for H2O2 at 240 nm (Bienert et al. 2007). 

The reaction rate of the enzyme was also examined at dif-
ferent pHs (3, 4, 5, 6, 7, 8, 9, 10 and 11) and temperatures (0, 10, 
25, 30, 40, 50, 60, 70, 80, 90, and 100°C). Different buffer systems, 
including glycine, phosphate, acetate and Tris were used to obtain 
0.1 M buffer in which pH varied from 3 to 11. The results of 
enzyme assays were the average of at least three separate experi-
ments and expressed as the mean ± standard deviation (±SD) using 
GraphPad Prism 5 program for statistical analysis. 

The amount of protein was measured by the Lowry method 
(Robyt and White 1987), using different concentrations of casein 
for drawing the standard curve. 

  
Enzyme purification 
 
The cell-free extract was brought to 50% ammonium sulfate satu-
ration. The precipitate was collected by centrifugation at 5000 � g 
for 10 min and dissolved in 0.1 M phosphate buffer (pH = 7). The 
suspension was dialyzed against phosphate buffer overnight. All 
the above procedures were performed at 4°C. The dialyzed sus-
pension was loaded onto a DEAE cellulose column equilibrated by 
50 mM Tris buffer (pH = 8). Elution was performed by increasing 
NaCl concentration at a flow rate of 1 ml/min. The fractions were 
monitored for the amount of protein (at 280 nm absorption) and 
enzyme activity was also detected. The fractions with maximum 
activity were selected for electrophoresis. Enzyme purification 
was performed three times and the best result was reported. 
 
Electrophoresis 
 
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) was performed with a 7.5% separating gel and a 3.5% 
stacking gel according to the Laemmli method (1970). After elec-
trophoresis, the proteins on the gel were detected by silver nitrate 
staining. A protein marker and bovine serum albumin (BSA) were 
used as molecular weight standards. 
 
RESULTS 
 
Morphological and subcellular changes 
 
Fig. 1 shows the roots in treated and control samples. The 
tap root system of the control was longer than that of the 
treated samples. Rootlets and root hairs were also more 
developed in the control. TEM images from a normal cell in 
the cortex region of the root shows that it contains a vacuole 
that filled most of the cell volume, a nucleus to one side, 
and mitochondria with normal shape that appeared to be 
active and are in condensed form and a Golgi complex (Fig. 
2). Some of the cells in the cortex region of root in treated 
samples were normal, but some had been damaged: the 
nucleus had lost its membrane unity, and the mitochondria 
had become autolytic (Fig. 3). 

 
Effect of pH and temperature 
 
CAT activity was studied at different pHs and different tem-
peratures in both control and treated samples. Fig. 4 shows 
the effect of various pHs on CAT activity. In both the con-
trol and treated samples, there were two peaks of activity. In 
the control, the peaks were observed at pH 7 and 10, while 
in treated samples the peaks were at pH 8 and 10. The opti-
mum pH was 10 in both samples. No activity was seen at 
pH 11. 

Maximum activity was detected at 30°C in both sam-
ples (Fig. 5). Increasing the temperature above 30°C de-
creased the activity. No activity was detected at 90°C in the 
control group while in the treated samples, the enzyme 
showed minor activity at 90°C and it completely lost its 
activity at 100°C. 
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Kinetic parameters 
 
A double reciprocal plot was drawn to determine the kinetic 
parameters of the enzyme in the control and treated samples 
(Fig. 6). Both Km and Vmax changed in treated samples in 
comparison with the control. The Km of the enzyme was 
1.13 and 1.5 mM and Vmax was determined to be 1.16 and 2 
mM/min/mg protein in treated and the control samples, 
respectively. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1 Comparison of the roots in the control (left) and treated 
samples (right). 

 
Fig. 2 A normal cell in cortex region of the root. Most of the cell 
volume has been occupied by vacuole. Mitochondria are active and are in 
condensed form. (top 7000 ×), (bottom 12000 ×) 

Fig. 3 Damaged cells from cortex region of the root in treated samples. 
The nucleus has lost its integrity. Mitochondria have entered autolysis. (A 
and D 12000 ×) (B and C 7000 ×) 
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Fig. 4 The effect of different pH on the catalase activity in the control 
and treated samples. Average values given ± standard deviation (n = 3). 
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Fig. 5 The effect of different temperature on the catalase activity in 
the control and treated samples. Average values given ± standard devia-
tion (n = 3). 
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Enzyme purification 
 
To purify CAT, an ammonium sulfate and DEAE cellulose 
column were used. Measurements of the amount of protein 
and enzyme activity were performed for each fraction. A 
summary of CAT purification in the control and treated 
samples is provided in Tables 1 and 2. 

SDS-PAGE was performed for the highly active frac-
tions (Fig. 7). Two bands were observed in the gel for both 
groups. The two subunits in the control group had a mole-
cular weight (MW) of 64,000 and 65,000 Daltons (Da) 
while the bands of treated samples showed a MW of 63,000 
and 64,000 Da. 

 
 

DISCUSSION 
 
Stress-inducing environmental elements such as salinity, 
drought, heat, heavy metals and organic pollutants can 
influence plant physiology and morphology (Cobbett 2000; 
Parida and Das 2005; Hatami et al. 2012; Mohsenzadeh et 
al. 2012; Zhou et al. 2012). There are many reports on the 
effect of organic pollutants such as crude oil and its deriva-
tives on plant morphology. For example, it was found that 
crude oil-contaminated soil (10,000 mg/kg) was phytotoxic 
to corn and red beans (Phaseolus nipponesis) (Baek et al. 
2004), Merkl et al. (2005) reported that Brachiaria brizan-
tha (palisade grass) and Cyperus aggregatus (inflated scale 
flatsedge) showed thicker roots in heavy crude oil-polluted 
soil compared to the control. A greenhouse study showed 
that in the presence of Venezuelan heavy crude oil-contami-
nated soil, biomass and plant height of vetiver (Vetiveria 
zizanioides) were significantly reduced (Brandt et al. 2006). 
Minai-Tehrani (2008) also showed that heavy crude oil in 
the soil at a 1-15% (w/w) could delay germination and 
reduce the number of seeds that germinated, and the length 
and width of leaves and also decrease the biomass of Poa 
trivialis (rough meadow-grass). Light crude oil-contami-
nated soil with a concentration greater than 3% could de-
crease root and shoot biomass, leaf length and germination 
percentage of sorghum (Sorghum bicolor) (Minai-Tehrani et 
al. 2012). This report on lentil focused on the effect of 
crude oil on the activity of CAT and also subcellular chan-
ges of root cells in crude oil in oil-contaminated soil. 

Our results showed that in oil pollution imposed mor-
phological and cellular changes in lentil roots. In treated 
samples, the tap root was shorter than the roots of control 
plants and had less developed rootlets, demonstrating that 
oil pollution alters root growth. The effect of crude oil-
contaminated soil on the root of Poa trivialis and Festuca 
arundinacea (tall fescue) has been previously reported to 
inhibit the growth of roots in contaminated soil (Minai-
Tehrani et al. 2007; Minai-Tehrani 2008). It was shown that 
in the presence of 5% (w/w) of heavy crude oil in the soil, 
the dry biomass of root in P. trivialis was reduced to half of 
the control (Minai-Tehrani 2008). The dry biomass of root 
in F. aurandinacea decreased by about 75% in the light 
crude oil-contaminated soil (5% w/w) (Minai-Tehrani et al. 
2007). Our observations on lentil at the subcellular level 
also showed that although some normal cells were observed 
in the treated roots, the number of damaged cells was quite 
significant. Damage was observed in the nucleus, cell wall, 
mitochondria and nuclear envelope, confirming that the 
damaged cellular structures were due exclusively to oil con-
tamination. The formation of many autolysosomes suggests 
that oil contamination had a toxic effect on the cells and led 
to autolysis. 

Other reports regarding organic-derived pollutants such 
as benzene focused on the deterioration of chloroplasts, 
mitochondria and cell walls of leaves in maize (Zea mays) 
and alfalfa (Medicago sativa) exposed to 0.4 mM benzene 

Table 1 Purification details of the control group. 
Purification step Volume (ml) Total activity (U) Total Protein 

(mg/ml) 
Specific activity 
(U/mg protein) 

Yield (%) Purification 
factor 

CFEa 2 0.03 0.11 0.027 100 1 
ASb 1.5 0.021 0.09 0.23 70 8.5 
IECc 1 0.013 0.02 0.65 61 24.1 

aCFE= cell-free extract.  
bAS= Ammonium sulfate.  

cIEC= Ione exchange chromatography  
 

Table 2 Purification details of treated samples. 
Purification step Volume (ml) Total activity (U) Total Protein 

(mg/ml) 
Specific activity 
(U/mg protein) 

Yield (%) Purification 
factor 

CFE 2 0.04 0.28 0.014 100 1 
AS 1.5 0.032 0.13 0.24 80 17.1 
IEC 1 0.022 0.0.3 0.73 68 52 
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Fig. 6 Lineweaver plot shows that both Km and Vmax have changed in 
treated samples. The error bars indicate ± standard deviation (n = 3). 

Fig. 7 Silver nitrate staining of SDS-PAGE of active fractions in both 
the control and treated samples. Lane 1: Protein markers. Lane 2: 
Bovine serum albumin (MW = 66450). Lanes 3 and 4 are treated samples 
and control group, respectively. 

42



Crude oil induces cell damage in plants. Mohammadi et al. 

 

vapor (Sadunishvili et al. 2009). 3-4 benzopyrene at a con-
centration of 2.6 × 10�8 �g/ml inhibited DNA synthesis in 
nuclei in maize (Zea mays) root cells (Buadze et al. 1998). 

CAT is an important enzyme for removing H2O2, which 
is harmful to plant cells (Chen et al. 2012; Mhamdi et al. 
2012). CAT activity, which decreases the risk of oxidative 
stress, changes when organisms encounter stressful con-
ditions in the environment (Mittler 2002; Shim et al. 2003; 
Attar et al. 2009). The amount of salicylic acid increased in 
rice seedlings stressed by NaCl treatment, it was inversely 
correlated with the decrease in the CAT activity (Shim et al. 
2003). Chronic exposure to high temperature (40ºC) in-
duced higher CAT activity in germinating seeds of maize 
(Scandalios 1994). In the leaves of cowpea (Vigna unguicu-
lata), CAT activity decreased in response to salt stress (200 
mM NaCl) (Cavalcanti et al. 2007). Therefore, CAT was 
chosen in this study to perceive the biochemical effects of 
crude oil on lentil roots. Some factors such as temperature, 
pH and enzyme activity were considered to compare the 
behavior of CAT in treated samples and in the control group. 
The temperature curve pattern of the enzyme was almost 
similar in both samples (Fig. 5) with maximum activity at 
30°C. CAT in treated samples was active at 90°C but not in 
the control group. These results demonstrate that lentil CAT 
is heat-resistant and does not completely lose its activity at 
a temperature as high as 90°C. The thermal stability of CAT 
has also been reported in other plants such as spinach (Spi-
nacia oleracea) and saffron (Crocus sativus L.) (Sapers and 
Nickerson 1962; Keyhani et al. 2002). 

There was a difference between the CAT pH curve in 
the control group and in treated samples. In the control 
there were two peaks at pH 7 and 10, while in treated sam-
ples, peaks were observed at pH 8 and 10 (Fig. 4). This 
result showed that CAT of lentil roots is more active in 
alkaline than in acidic conditions. In dormant saffron corms, 
the activity of three CAT isozymes was detectable over a 
wide range of pHs (5-11.5) with maximum activity found at 
pH 6 to 11 (Keyhani et al. 2002). 

The kinetic measurements revealed that both Km and 
Vmax of CAT changed in treated samples in comparison with 
the control (Fig. 6). The reduced Km of CAT in treated 
samples demonstrates that the affinity of the enzyme for the 
substrate increased. The specific CAT activity in treated 
samples also increased. These differences suggest that a 
CAT isozyme may be expressed in lentil roots under stress 
induced in the presence of crude oil. 

Kinetic comparisons of 5 cottonseed (Gossypium hir-
sutum) CAT isozymes indicated that they had similar Km 
values and thermostability (Ni and Trelease 1991). CAT 
activity changes in different environmental conditions such 
as light and CO2 level. In barley (Hordeum vulgare) leaves, 
there were two CAT isoforms with a 53 and a 57 kDa sub-
unit, the first induced and the second repressed by light 
(Holtman et al. 1998). In high CO2 (1% CO2/21% O2), total 
CAT activity decreased by 50% in leaves of tobacco seed-
lings (Nicotiana sylvestris, Nicotlana tabacum) (Havir and 
McHale 1989). 

CAT may appear in plants as various isozymes in res-
ponse to different environmental conditions. Only a single 
bond was reported for purified CAT of loblolly pine (Pinus 
taeda) (Mullen and Gifford 1993), cottonseed (Kunce et al. 
1988), and potato (Solanum tuberosum) (Esaka and Asahi 
1982). However, in our experiment, SDS-PAGE of purified 
enzyme indicates that lentil CAT consisted of two subunits 
(� and �) which could be monitored with two distinct bands 
in the gel. A minor difference was observed between the 
mobility of these two bands in treated and the control sam-
ples. This suggests that a CAT isoform is expressed in trea-
ted samples. Castor bean (Ricinus communis) endosperm 
CAT also showed two subunits in SDS-PAGE (Ota et al. 
1992; Holtman et al. 1998). 

In conclusion, our results showed that the presence of 
crude oil in soil can impose sub-cellular and biochemical 
changes in lentil roots as a result of their direct contact with 
oil-polluted soil. 
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