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ABSTRACT 
Abiotic stresses are the major cause that limits productivity of crop plants worldwide. Plants respond to these stress conditions at 
physiological and molecular levels. At the molecular level, the expression of thousands of genes is altered in response to various abiotic 
stress conditions. Several studies have been performed to find out the role of these genes in abiotic stress signaling. However, among 
these, transcription factor encoding genes are most important because many of them act as ‘key or master regulators’ of gene expression. 
Transcription factors appear to be attractive targets to unravel the molecular mechanisms of abiotic stress responses and engineering 
abiotic stress tolerance in plants. However, the role of only a few transcription factors in abiotic stress responses have been elucidated in 
rice until now and require a detailed investigation for several such candidate genes. In this review, our endeavour is to develop a 
comprehensive understanding of the intricate regulatory network of transcription factors operative during abiotic stress responses with 
greater emphasis on rice. 
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INTRODUCTION 
 
Plants are extremely prone to environmental onslaughts like 
various abiotic stresses and pathogen invasion. Abiotic 
stress factors such as water-deficit, high salinity and ex-
tremes of temperature cause great loss in crop productivity 
worldwide. Since the food demand is far exceeding the 
growing population, optimum crop productivity is an im-
mediate matter of concern and needs to be addressed using 
various biotechnological techniques/applications. Plants 
have developed intricate machinery to respond and adapt 
these adverse conditions both at physiological and molecu-
lar levels. Hence, it is very important to understand the 
molecular mechanisms underlying various abiotic stress 
responses. This knowledge would enable development of 
stress tolerant crops with optimum yield and better sus-
tenance. Abiotic stress is a multigenic trait and hence, it is 
difficult to decipher the complete regulatory network in-
volved in abiotic stress responses. Although current re-
search has divulged several key genes, quantitative trait loci 

and gene regulatory networks that mediate plant responses 
to various abiotic stresses, the comprehensive understan-
ding of this complex trait has still not been deciphered. 

The knowledge available in context of abiotic stress 
regulatory networks in plants is preliminary. However, over 
the years, transcriptome analysis of model plant species like 
Arabidopsis and rice have identified thousands of stress-
responsive genes involved in various biological processes 
(Urano et al. 2010). Among them, transcription factors are 
the key regulators of gene expression and uniquely mediate 
abiotic stress responses in plants via several regulons in the 
complex signal transduction network. Understanding the 
molecular basis of signaling cascades is of utmost impor-
tance in order to decipher the abiotic stress regulatory net-
work. Considerable work regarding characterization of 
transcription factors involved in signaling cascades has 
been carried out in Arabidopsis and fundamental knowledge 
has been established in rice as well. Rice is an annual, 
monocot model crop plant with great nutritive value. It is 
consumed as a staple food in large parts of the world (Gao 
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et al. 2008). Therefore, the biology of abiotic stress respon-
ses needs to be understood completely to devise new/better 
technologies for rice improvement. Previously, several re-
ports have also described abiotic stress signaling and regu-
latory networks in plants (Chinnusamy et al. 2004; Mahajan 
and Tuteja 2005; Vij and Tyagi 2007; Nakashima et al. 
2009; Hirayama and Shinozaki 2010; Urano et al. 2010; 
Yang et al. 2010; Hardiato and Tran 2011; Qin et al. 2011; 
Todaka et al. 2012). However, the complexity of the sig-
naling cascades and regulatory networks in the abiotic 
stress responses needs to be unfurled exhaustively in the 
future. This review highlights advances in understanding 
abiotic stress regulatory networks in plants with a greater 
emphasis on rice. It aims to provide insights into the abiotic 
stress signaling mediated by rice transcription factors and 
focuses on the importance of transcription factors as pro-
mising candidates for future biotechnological implications. 
 
IMPORTANCE OF TRANSCRIPTION FACTORS 
 
Transcription factors comprise of a major group of regu-
latory proteins, which participate in the complex orches-
tration of the abiotic stress regulatory network (Fig. 1). In 
general, abiotic stress response is mediated via ABA-depen-
dent and independent pathways. The production of several 
protein kinases is triggered in response to abiotic stress fac-
tors and they in turn, act directly or indirectly on transcrip-
tion factors modulating their action. These transcription 
factors at the same time can be regulated by other unknown 
components and small non-coding RNA molecules. Trans-
cription factors act as master regulators controlling the ex-
pression of many target genes either singularly or in con-
junction with other transcription factors by specific binding 
to cis-regulatory elements in the promoter of downstream 
target genes (Nakashima et al. 2009). The cis- and trans-
acting elements of several transcription factors in plants, 
especially Arabidopsis and rice, have been analyzed in 
order to decipher the molecular mechanisms involved in 

transcriptional regulation (Yamaguchi and Shinozaki 2005; 
Fujita et al. 2006; Zou et al. 2011). Transcription factors 
may coordinate/regulate several pathways in parallel, lead-
ing to diverse abiotic stress responses (Fig. 1). They regu-
late the expression of stress-responsive genes and appear to 
be the link between sensing of the stress signals and gene-
ration of abiotic stress responses (Golldack et al. 2011). The 
transcription factors act as molecular switches and culmina-
tion points of signal transduction in abiotic stress responses 
(Yamaguchi and Shinozaki 2005, 2006). Among the numer-
ous plant transcription factors involved in abiotic stress res-
ponses, it is particularly important to identify ‘key or master 
regulators’ and other associated regulatory components, so 
that the hierarchy of molecular mechanisms in the regu-
latory network could be revealed. 

 
DIFFERENTIAL EXPRESSION OF 
TRANSCRIPTION FACTORS UNDER ABIOTIC 
STRESS CONDITIONS 
 
The expression profiles of various transcription factors have 
been studied in different plants at single gene, gene family 
and whole genome levels. Over the years, numerous trans-
cription factor encoding genes have been reported to be 
differentially expressed during various abiotic stress con-
ditions. Rice transcription factors induced during drought 
stress responses at different developmental stages have also 
been delineated recently (Yue et al. 2006; Zhou et al. 2007; 
Rabello et al. 2008; Ray et al. 2011). Earlier, using micro-
array technology, Rabbani et al. (2003) conducted transcrip-
tome analysis of 1700 independent rice cDNAs under 
drought, cold and salinity stresses and identified several 
stress-inducible transcription factors. About 40% of the 
drought or salinity induced genes were also found to be 
affected by cold stress. Additionally, >98% and 100% of 
salinity and abscisic acid (ABA) inducible genes, respec-
tively, were also activated by drought stress suggesting cor-
relation among drought and salinity stress signaling path-
ways. A comparative transcriptome analysis of Arabidopsis 
and rice revealed that they share common stress-inducible 
genes and may exhibit conservation in the mechanism of 
action during abiotic stress responses even though eudicots 
and monocots separated approximately one million years 
ago during evolution (Shinozaki and Yamaguchi-Shinozaki 
2007). 

In Arabidopsis and rice, 56 and 63 transcription factor 
families have been reported, respectively, of which many 
have been found to be responsive to various abiotic stresses 
(Guo et al. 2005; Gao et al. 2006). At least one member of 
58 families exhibited differential expression under water-
deficit stress in rice (Ray et al. 2011). A few of these trans-
cription factors families like dehydration responsive ele-
ment binding (DREBs), belonging to ethylene response fac-
tor (ERF) family have been well investigated. For example, 
OsDREB1A to OsDREB1I, OsDREB2A to OsDREB2E and 
OsABI4 have been analyzed in rice. Drought stress con-
ditions induced OsDREB1F, OsDREB1G, OsDREB2A and 
OsDREB2B genes, whereas OsDREB1A and OsDREB1B 
genes showed upregulation due to low temperature con-
ditions. Additionally, an altered expression level of 
OsDREB1F has been reported after ABA treatment in 
Arabidopsis (Dubouzet et al. 2003; Chen et al. 2008; Wang 
et al. 2008). Other stress-responsive genes belonging to the 
Apetalla2 (AP2) transcription factor family like AP37, 
AP59 and ABA responsive AP2-like gene (ARAG1) were 
also found to be induced by water-deficit conditions (Oh et 
al. 2009; Zhao et al. 2010). 

The basic leucine-zipper (bZIP) domain transcription 
factor family is comprised of 89 members in rice, harboring 
a bZIP domain composed of a DNA-binding basic region 
and the Leu zipper dimerization region (Nijhawan et al. 
2008). Among 33 abiotic stress-responsive bZIP genes, 24 
were found to be upregulated and nine genes showed down-
regulation in rice (Nijhawan et al. 2008). Many of these 
genes exhibited response to multiple stresses and some of 
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Fig. 1 Model for transcription factor mediated abiotic stress signaling. 
Abiotic stress response is mediated by ABA-dependent or independent 
pathways via protein kinases followed by activation/repression of trans-
cription factors directly or indirectly. The transcription factors are also 
regulated by non-coding RNAs. Transcription factors either independently 
or in conjunction/coordination with other transcription factors regulate the 
expression of several downstream target genes, which leads to a stress 
response. 
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them showed response to specific stress condition only. 
OsbZIP23 was evidenced to be upregulated by salinity, 
water-deficit, polyethylene glycol (PEG) and ABA treat-
ments, but not due to low temperatures (Xiang et al. 2008). 
In addition, OsABI5 expression was found to be induced by 
ABA treatment and high salinity conditions; however the 
gene was downregulated under water-deficit and low tem-
perature conditions in rice seedlings (Zou et al. 2008). The 
transcription factor responsible for ABA regulation 1 
(TRAB1), a trans-acting factor involved in the ABA-medi-
ated gene regulation, showed altered expression in drought 
and salinity stress treated rice seedlings (Hobo et al. 1999). 
Furthermore, rice ABA-responsive element binding trans-
cription factor, OsAREB1, was found to be upregulated by 
ABA and PEG treatments besides heat stress (Jin et al. 
2009). Differential expression of several NAM, ATAF1/2 
and CUC2 {No apical meristem, Arabidopsis thaliana acti-
vation factor1/2, Cup-shaped cotyledon2} (NAC) transcrip-
tion factors have also been reported during abiotic stress 
conditions. It has been observed that exogenous ABA, 
water-deficit and salinity lead to induction of ONAC5 and 
ONAC6 transcription factors. Similar expression patterns 
were seen for OsNAC5 and homologous genes like 
OsNAC6, stress-responsive NAC1 (SNAC1), OsNAC3 and 
OsNAC4 as well (Takasaki et al. 2010). Among them, a 
member of ATAF subfamily, OsNAC6, has been found to be 
localized in the nucleus and acts as a transcriptional acti-
vator. It is highly expressed in response to several abiotic 
and biotic stresses (Ohnishi et al. 2005). 

Among a total of 107 members of homeobox transcrip-
tion factors family, at least 37 were also found to be dif-
ferentially expressed in rice seedlings under various abiotic 
stress conditions (Jain et al. 2008). In addition, a few 
homeodomain leucine-zipper (HD-Zip) gene family mem-
bers were reported to have altered expression levels in 
drought-tolerant and sensitive varieties of rice in the 
flowering stage (Agalou et al. 2008). Based on some evi-
dences, it has been speculated that homeobox transcription 
factors are involved in regulation of abiotic stress responses 
via both ABA-dependent and independent pathways 
(Bhattacharjee and Jain 2012). Likewise, several MCM1, 
Agamous, Deficiens and SRF (MADS)-box transcription 
factors were also found to be upregulated under abiotic 
stress conditions (Arora et al. 2007; Ray et al. 2011). 

Several other rice transcription factor families, inclu-
ding WRKY, zinc-finger homeodomain (ZFHD), plant 
homeodomain (PHD) zinc-finger, Cys3/His (C3H) and 
Cys2/His2 (C2H2) zinc-finger transcription factors, etc. 
have also been reported to be involved in abiotic stress res-
ponses (Ray et al. 2011). Among the WRKY transcription 
factors, four were upregulated by drought, 13 were up-
regulated by drought and salinity, and two were upregulated 
by drought but downregulated by cold stress, whereas one 
gene was upregulated by drought but downregulated by 
cold and salinity stress (Ramamoorthy et al. 2008). Besides 
this, rice seedlings, when exposed to high concentration of 
PEG, ABA, NaCl treatments and high temperature con-
ditions, exhibited significant induction of OsWRKY72 
(Song et al. 2010). So far, 20 TIFY transcription factors 
(previously known as ZIM {Zinc-finger motif expressed in 
Inflorescence Meristem} domain transcription factors) have 
been recognized in rice and six of them were found to be 
induced prominently by water-deficit conditions (Ye et al. 
2009). Among myeloblastosis (MYB) transcription factors, 
only OsMYB3R-2 was found to be induced by drought, 
salinity and cold stress (Dai et al. 2007). Moreover, trans-
cription factors in Arabidopsis belonging to nuclear factor Y 
(NF-Y) and basic helix-loop-helix (bHLH) family also 
showed differential expression and have been reported to be 
involved in multiple stress responses recently (Fujita et al. 
2011). 

 
 
 

STRESS TOLERANCE MEDIATED BY RICE 
TRANSCRIPTION FACTORS 
 
Several rice transcription factors involved in abiotic stress 
responses have been functionally characterized so far. Over-
expression or knocking out of such transcription factors 
have been shown to confer abiotic stress tolerance in trans-
genic plants. Here, we provide a few examples of trans-
cription factor mediated stress responses/tolerance in plants. 
A plethora of stress-responsive genes get activated due to 
over-expression of DREB transcription factors in transgenic 
plants resulting in enhanced stress tolerance. OsDREB1A 
over-expression led to upregulation of ten specific genes, 
including ABA regulated genes, which conferred dehydra-
tion tolerance in plants (Dubouzet et al. 2003). Moreover, 
the function of AtDREB1A remained conserved when over-
expressed in rice, resulting in accumulation of osmolytes 
like proline and sugars, eventually leading to abiotic stress 
tolerance (Ito et al. 2006). When AtDREB1A and ABRE-
binding factor3 (ABF3) were over-expressed in rice, 13 and 
27 genes were activated during drought conditions, without 
any compromise in the plant growth and productivity. The 
transgenic plants exhibited considerable drought tolerance 
due to the activation and alteration in levels of stress-
inducible targets like late embryogenesis abundant (LEA) 
proteins, cold-inducible (KIN), phospholipase C and others, 
which led to the development of abiotic stress tolerance in 
rice (Kasuga et al. 1999; Oh et al. 2005). Interestingly, 
barley C-repeat binding factor4 (CBF4) proved to be more 
potent than AtDREB1A in conferring stress tolerance, sig-
nifying differences in the functionality of DREB proteins 
across species, which might depend on the plant genome 
composition and the ability of transcription factors to acti-
vate and repress different sets of target genes (Nakashima et 
al. 2009). OsDREB1A and OsDREB1B over-expression 
lines exhibited enhanced drought and low temperature tol-
erance in rice, respectively, whereas in Arabidopsis, the 
over-expression of OsDREB2B enabled better survival 
during water-deficit and heat stress conditions (Ito et al. 
2006; Matsukura et al. 2010). The over-expression of 
OsDREB1F in rice also resulted in upregulation of 
downstream target genes involved in both ABA-dependent 
and ABA-independent transcriptional regulation (Liu et al. 
1998; Wang et al. 2008). In Arabidopsis, the over-expres-
sion of DREB2A without the repressor domain and 
DREB2C resulted in thermotolerance, suggesting a cross-
talk between heat and drought stress regulation (Liu et al. 
1998; Lim et al. 2007; Qin et al. 2008). 

Among other AP2 domain-containing transcription fac-
tors, the overexpression of AP37, AP59 and ARAG1 showed 
enhanced tolerance to drought stress in transgenic rice 
plants without any phenotypic abnormality. Contrarily, in 
several instances, over-expression of transcription factors 
led to developmental compromise. For example, DREB1A 
over-expression in Arabidopsis was accompanied by reduc-
tion in crop yield and stunted growth (Ito et al. 2006). 
Hence, the use of stress-inducible promoter like response to 
dehydration 29A (rd29A) has been encouraged with the aim 
to raise transgenic plants devoid of pleiotropic developmen-
tal alterations. For example, the over-expression of 
DREB1A under the control of stress-inducible promoter led 
to development of abiotic stress tolerant plants with opti-
mum crop yield and normal growth (Kasuga et al. 1999). 

Recent evidences show that homeobox transcription 
factors, which are majorly involved in developmental pro-
cesses, have also been implicated in abiotic stress responses. 
The over-expression of some homeobox transcription fac-
tors has imparted abiotic stress tolerance in Arabidopsis 
transgenic plants (Zhu et al. 2004; Tran et al. 2006; Yu et al. 
2008; Bhattacharjee and Jain 2012). Recently, a gain-of-
function mutation in homeodomain the lipid sterol- binding 
StAR-related lipid transfer (START) transcription factor has 
also been shown to impart drought tolerance to Arabidopsis 
plants (Yu et al. 2008). However, only one rice transcription 
factor, OsBHD1, has been analyzed in planta so far. The 
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transgenic tobacco plants were sensitive to salinity and oxi-
dative stress, but developed enhanced tolerance to viral 
infections. These evidences suggested negative regulatory 
role of OsBHD1 in context of abiotic stress responses. It 
was also speculated that OsBHD1 regulates abiotic and 
biotic stress responses independently via different pathways 
(Luo et al. 2005). 

The rice bZIP family includes around 100 members and 
many of them, namely OsbZIP05/OSBZ8, OsbZIP12/ 
OsABF1, OsbZIP23, OsbZIP38/LIP19, OsbZIP66/TRAB1, 
OsbZIP72, OsAREB1 and OsABI5, have been comprehen-
sively analyzed (Nakagawa et al. 1996; Hobo et al. 1999; 
Shimizu et al. 2005; Nijhawan et al. 2008; Xiang et al. 
2008; Lu et al. 2009; Hossain et al. 2010). Among bZIP 
transcription factors, the negative regulatory role of OsABI5 
was established in abiotic stress responses, when their anti-
sense transgenic plants exhibited improved tolerance to 
osmotic and salinity stress, but decreased rice fertility. Con-
trarily, their over-expression lines were more sensitive to 
ABA, salinity and PEG treatment (Zou et al. 2008, 2009). 
Besides this, Xiang et al. (2008) showed that OsbZIP23 
positively regulated the expression of several stress-induci-
ble genes via ABA-dependent pathway in various abiotic 
stress responses. The over-expression of OsbZIP23 con-
ferred abiotic stress tolerance and activated several stress-
responsive downstream target genes like dehydrins, phos-
phatases, protein kinases, LEA proteins and other metabolic 
enzymes in rice leading to stress tolerance without any 
growth retardation or losses in crop yield. Recently, it has 
been demonstrated that drought tolerance in rice is signifi-
cantly improved upon constitutive activation of OsbZIP46 
(Tang et al. 2012). Similarly, the over-expression of 
OsAREB1 in Arabidopsis yielded heat and drought stress-
tolerant plants (Jin et al. 2009). Thus, these transcription 
factors have proved to be promising targets for engineering 
stress tolerance in crop plants like rice. 

The plant-specific NAC transcription factor family is 
comprised of numerous genes involved in plant develop-
ment and abiotic stress responses. The over-expression of 
several NAC transcription factors led to generation of 
stress-tolerant rice and Arabidopsis transgenic plants 
(Nakashima et al. 2012; Puranik et al. 2012). Among 151 
NAC genes, at least 45 are induced by various abiotic stress 
conditions in rice (Fang et al. 2008; Nuruzzaman et al. 
2010). Many of the NAC genes were found to be responsive 
to multiple abiotic stresses (Ray et al. 2011). The OsNAC6 
over-expression transgenic rice lines showed retarded 
growth and poor grain yield, and altered expression of seve-
ral target genes like protein kinases, transcription factors, 
chitinases and peroxidases. However, these plants depicted 
improved tolerance during abiotic stress conditions (Naka-
shima et al. 2007). Simultaneous investigations suggested 
that under the control of stress-inducible promoter, OsNAC6 
transgenic rice lines with better productivity and minimal 
growth retardation could be obtained. Subsequently, suita-
ble evidences revealed that OsNAC6 acts as a transcriptio-
nal activator in both abiotic and biotic stress responses 
(Ohnishi et al. 2005; Nakashima et al. 2007). Correspon-
dingly, over-expression of OsNAC5 in rice showed drought 
tolerance without developmental defects. This study rev-
ealed that both these NAC transcription factors activated 
different target genes (Takasaki et al. 2010). In another 
study, the over-expression of stress-responsive NAC1 
(SNAC1) and stress-responsive NAC2 (SNAC2/OsNAC6) 
genes in rice imparted enhanced stress tolerance without 
developmental defects or compromise on the grain yield 
even in the field conditions (Hu et al. 2006, 2008; Naka-
shima et al. 2009). Another NAC protein, ONAC45, when 
over-expressed in rice showed considerable tolerance to 
various abiotic stresses at the seedling stage and plants were 
devoid of phenotypic compromises (Zheng et al. 2009). 

WRKY transcription factors also consist of a large gene 
family in Arabidopsis (72) and rice (109) and are unique to 
green lineage of eukaryotes i.e. plant kingdom (Ulker et al. 
2004; Rushton et al. 2010). WRKY family proteins contain 

highly conserved WRKY domain and a zinc-finger structure 
distinct from other known zinc-finger motifs (Eulgem et al. 
2000). WRKY transcription factors play important role in 
plant stress responses via reprogramming the transcriptional 
machinery (Chen et al. 2012). The over-expression of 
OsWRKY72 in transgenic Arabidopsis exhibited increased 
sensitivity of plants to mannitol, NaCl and ABA, and acti-
vated ABA-dependent genes like ABI4 and ABA2 (Song et 
al. 2010). Besides this, differential salt induced regulation 
of a WRKY protein has been witnessed in salinity-sensitive 
rice and its halophytic salt-tolerant relative, suggesting the 
possibility of WRKY proteins conferring salinity tolerance 
in transgenic plants (Diedhiou et al. 2009). It was evidenced 
that OsWRKY45 gets induced by a range of abiotic stress 
factors and its over-expression in Arabidopsis resulted in 
activation of several stress-responsive genes. In addition, 
OsWRKY45 has been speculated to be involved in the ABA-
dependent signal transduction pathway mediating drought 
tolerance (Qiu and Yu 2009). Recently, TIFY transcription 
factors also have been characterized in rice. Reports showed 
that the over-expression of OsTIFY11a in transgenic rice led 
to improved drought and salinity tolerance (Ye et al. 2009) 
and its alleles have been found to perform diverse and over-
lapping roles in abscisic acid signaling and abiotic stress 
tolerance (Tao et al. 2011). 

Many zinc-finger-like transcription factors, namely 
zinc-finger protein 245 (ZFP245), ZFP252, members of 
stress associated protein gene family, namely, Oryza sativa 
indica stress-associated proteins (OsiSAP1 and OsiSAP8), 
drought and salt tolerance transcription factor (DST) and 
Oryza sativa cold-inducible (OsCOIN) also get induced by 
abiotic stresses. The over-expression of zinc-finger protein 
(ZFP245), OsCOIN, OsiSAP1 and OsiSAP8 has been 
shown to confer abiotic stress tolerance in transgenic plants 
(Mukhopadhyay et al. 2004; Liu et al. 2007; Kanneganti 
and Gupta 2008; Huang et al. 2009a). The elevated levels of 
stress-responsive genes like OsDREB1A, OsLEA3, Oryza 
sativa delta1-pyrroline-5-carboxylate synthetase (OsP5CS) 
and Oryza sativa proline transporter (OsProT) in ZFP252 
transgenic over-expressing rice lines suggested their potent 
implications in abiotic stress responses (Xu et al. 2008). 
Additionally, a Cys2/His2 zinc-finger protein, drought and 
salt tolerance (DST) protein, has been reported to regulate 
stomatal closure, as it targets reactive oxygen species 
(ROS) homeostasis related genes in an ABA-independent 
manner (Huang et al. 2009b). In rice, repression of DST 
further decreases levels of peroxidase 24 precursor, which 
consequently increases levels of H2O2, thereby promoting 
stomatal closure and enhancing drought stress tolerance 
(Huang et al. 2009b). Recently, it has been found that many 
zinc-finger transcription factors also act as versatile regu-
lators of OsDREB1B (Figueiredo et al. 2012). 

MYB transcription factors represent another important 
family involved in abiotic stress responses that act in ABA-
dependent pathway of transcriptional regulation (Martin 
and Javier 1997; Agarwal and Jha 2010). A low temperature 
regulated transcription factor, OsMyb4, has been found to 
intricately affect stress tolerance and panicle development 
in rice (Park et al. 2010). In addition, the over-expression of 
OsMYB4 in different host plants like Arabidopsis and 
tomato exhibited varied tolerant phenotypes (Vannini et al. 
2004, 2007). However, the over-expression of OsMYB3R-2 
in Arabidopsis yielded transgenics with stunted growth but 
greater abiotic stress tolerance (Dai et al. 2007). Another 
MYB family protein, OsMYB2, was also found to impart 
tolerance to multiple abiotic stresses in rice (Yang et al. 
2012). 

 
ROLE OF ABSCISIC ACID IN TRANSCRIPTION 
FACTOR-MEDIATED REGULATORY NETWORK 
 
Several plant hormones influence abiotic stress signal trans-
duction pathways and some of their roles have already been 
elucidated. While salicylic acid (SA), jasmonic acid (JA) 
and ethylene (ET) are mainly involved in biotic stress res-
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ponses, ABA, cytokinin and auxin have been shown to be 
predominantly associated with abiotic stress responses 
(Morgan and Drew 1997; Wang et al. 2002; Yang et al. 
2004; Horvath et al. 2007; Grant and Jones 2009; Jain and 
Khurana 2009; Wasternack and Kombrink 2010; Tran et al. 
2010; Fujita et al. 2011). 

Among them, ABA is produced during stress conditions 
and plays a key role in molecular regulation (Cutler et al. 
2010; Raghavendra et al. 2010; Fujita et al. 2011). ABA 
mediates stomatal closure and regulates several develop-
mental processes like embryo maturation, seed development 
and dormancy. It even participates in abiotic stress signaling 
leading to activation of stress-responsive genes. ABA 
accumulates as a result of dehydration and other abiotic 
stresses, which in turn triggers expression of several stress-
inducible genes. The ABA-dependent transcriptional regula-
tory pathway involves key transcription factors like DREBs, 
NACs and MYBs (Shinozaki and Yamaguchi-Shinozaki 
2007). An interrelation between water-deficit responses 
mediated via ABA and JA dependent pathways has been es-
tablished. This implies crosstalk between biotic and abiotic 
stress responses (Shinozaki and Yamaguchi-Shinozaki 
2007; Wastenack and Kombringe 2010). Based on ABA 
metabolism studies, it has been deciphered that the ABA 
catabolic and biosynthetic enzymes like 9-cis-epoxy caro-
tenoid dioxygenases (NCEDs) may be critical in mediating 
enhanced drought tolerance (Iuchi et al. 2001). 

ABA-mediated transcriptional regulation has been ex-
haustively studied in response to osmotic stress in plants. A 
working model of ABA mediated transcriptional control 
during osmotic stress in Arabidopsis highlights the partici-
pation of several regulatory molecules like kinases, chro-
matin remodeling factors, second messengers, cis-acting 
elements and specific transcription factors in osmotic stress 
regulatory network (Fujita et al. 2011). Specifically, sucrose 
nonfermenting1 (SNF1)-related kinase 2 (SnRK2) are criti-
cal to the signaling cascade operative during osmotic stress 
(Nakashima et al. 2009; Fujita et al. 2011). Well-defined 
roles of these molecules have been suggested in post trans-
lational modifications like phosphorylation, enabling tar-
geting of downstream transcription factors (Kobayashi et al. 
2005; Furihata et al. 2006). Transgenic over-expression of 
rice SNF1-type serine-threonine protein kinase (SnRK2-
type SAPK4) led to controlled ion and ROS homeostasis 
under salinity stress conditions (Diedhiou et al. 2008). So 
far, 30 calcineurin B-like protein-interacting protein kinases 
(CIPK/SnRK3) are known in rice, of which 15 CIPKs are 
drought-inducible and harbor ABA-responsive element 
(ABRE) and/or drought-responsive element (DRE), in their 
promoter region (Xiang et al. 2007). In addition, ten SnRK2 
kinases primarily induced by hyperosmotic stresses have 
been identified in rice (Kobayashi et al. 2004). Notably, in 
rice protoplasts, stress/ABA-activated protein kinases 
(SAPKs) were able to control the downstream target genes 
containing ABRE elements, signifying their function in an 
ABA-dependent manner (Kobayashi et al. 2005; Naka-
shima et al. 2009; Umezawa et al. 2010). 

 
TRANSCRIPTIONAL REGULATORY NETWORKS 
 
A number of transcription factors have been shown to coor-
dinate and/or interact directly or indirectly to generate abi-
otic stress responses in plants. Inducer of CBF expression 1 
(ICE1) has been reported to control the expression of 
DREB1 transcription factors in Arabidopsis (Chinnusamy 
et al. 2003). Dong et al. (2006) demonstrated that ICE1 
controls the expression of a RING finger protein, high ex-
pression of osmotically responsive1 (HOS1) protein. 
Additionally, Miura et al. (2007) also reported enhanced 
activation of DREB1A by SIZ1 via sumoylation. DREB2 
has been shown to act in conjunction with DREB inter-
acting proteins (DRIP), which are enzyme3 (E3) ubiquitin 
ligases (Qin et al. 2008). Responsive to dessication22 
(RD22) gets activated by MYB and Myelocytomatosis 
(MYC) transcription factors during osmotic stress in Arabi-

dopsis (Abe et al. 2003). Phosphorylation by SnRK2 has 
been reported to be significant in activating various ABA-
dependent transcription factors like ABA responsive ele-
ment binding1 (AREB1) in Arabidopsis and TRAB1 in rice 
(Kobayashi et al. 2005; Furihata et al. 2006). Calmodulin-
binding transcription activator (CAMTA) transcription fac-
tors bind to conserved motif and activate Ca2+ signaling 
occurring during abiotic stress responses (Doherty et al. 
2009). There are reports that during osmotic stress, stress-
inducible NAC transcription factors bind to MYC type 
drought-responsive sequence and zinc finger-homeo-
domain1 (ZF-HD1) transcription factor binds to ZFHD 
recognition (ZFHDR) sequence in the early responsive to 
dehydration1 (ERD1) promoter, thereby cooperatively acti-
vating its expression (Tran et al. 2004, 2006). Moreover, in 
Arabidopsis zinc finger transcription factor, ZAT12 and 
DREB2 are implicated in drought and salinity stresses res-
pectively, by regulation of DREB genes (Vogel et al. 2005). 
Although, these studies provide good examples of coordi-
nation and interaction among transcription factors during 
abiotic stress responses, comprehensive interaction studies 
among rice transcription factors are still awaited. 

The existence of at least four pathways in abiotic stress 
responses has been proposed (Shinozaki and Yamaguchi-
Shinozaki 1997). The ABA-dependent pathway I involves 
protein synthesis (for example, bZIP and MYC/MYB) for 
downstream gene expression, whereas in the ABA-depen-
dent pathway II, no protein synthesis is required. In this 
case, bZIP proteins directly bind to cis-acting element, 
ABRE, mediating gene expression. Further, the existence of 
ABA-independent pathways III and IV during drought and 
salinity conditions was suggested. Reports revealed that in 
ABA-independent pathway IV, DRE motifs were essential 
for cold stress regulation, apart from drought and salinity 
responses. In addition, the roles of cis- and trans-acting 
elements in abiotic stress responses have been explored and 
they were found to mediate abiotic stress signaling via 
transcription factors. ABA-responsive element binding pro-
teins (AREBs) and MYC/MYBs trigger the abiotic stress 
response via binding to ABRE and MYCRS/MYBRS se-
quences, respectively, whereas the DREB and NAC trans-
cription factors mediate stress responses by specific binding 
to DRE/CRT and NAC recognition site (NACRS) motifs 
present in the promoter of respective target genes (Tran et 
al. 2004; Yamaguchi-Shinozaki and Shinozaki 2005). The 
analysis of cold stress-inducible gene promoters revealed 
the existence of DRE and ABRE motifs suggesting that the 
cold stress response is generated via both ABA-dependent 
and independent pathways (Yamaguchi-Shinozaki and 
Shinozaki 1994; Stockinger et al. 1997). 

Later, Shinozaki and Yamaguchi-Shinozaki (2007) in-
vestigated more about gene networks prevalent in drought 
stress and identified several transcription factors as con-
necting links in the previously proposed generalized abiotic 
stress regulatory network. Apart from the existing four path-
ways of transcriptional regulation, they projected the exis-
tence of other ABA-dependent and independent drought 
related regulatory pathways. In the ABA-dependent path-
way, ABREs exist as crucial ABA-responsive elements 
recognized by AP2 transcription factors. The RD22 gene 
gets induced by MYB2/MYC2 transcription factors, which 
bind to cis-acting element, namely MYC/MYC recognition 
site (MYCRS/MYBRS) (Abe et al. 1997). Moreover, MYC2 
and NAC (RD26) transcription factors were reported to be 
involved in wounding stresses apart from ABA-dependent 
abiotic stress signaling (Shinozaki and Yamaguchi-Shino-
zaki 2007). Particularly, in the RD26 over-expression plants, 
activation of prominent stress-inducible genes was not seen. 
Instead, accumulation of gene products involved in antioxi-
dant defense systems like glyoxylase 1 family proteins 
(GLY molecules) and JA-induced stress-responsive gene 
products was reported. The RD26 promoter was found to be 
enriched in W boxes and asymmetric1 (AS1) motifs apart 
from cis-acting elements like ABRE, DRE, MYCRS and 
MYBRS, which are recognition sites involved in ABA-
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dependent gene expression (Fujita et al. 2004). This sug-
gested crosstalk between ABA- and JA-mediated stress 
signaling. Hence, it is clear that the ABA-dependent and 
independent pathways act in coherence and simultaneously 
coordinate the abiotic stress responses in plants (Shinozaki 
and Yamaguchi-Shinozaki 2007). Notably, in Arabidopsis, 
another drought and salinity controlled ABA-independent 
pathway comprising of NAC and homeodomain-leucine 
zipper (HD-ZIP) transcription factors exists, which acti-
vates ERD1 gene expression ensuring abiotic stress tol-
erance (Shinozaki and Yamaguchi-Shinozaki 2007). Similar 
pathways are speculated to exist in rice abiotic stress regu-
latory network also. 

 
AREB regulon 
 
ABA induces the expression of several stress-responsive 
genes. These ABA-inducible genes are bZIP-type transcrip-
tion factors, which exclusively act via ABA-dependent 
pathways and contain specific cis-acting elements known as 
ABREs in their promoter region. These elements exist in 
conjunction with coupling elements, which are of utmost 
importance in the ABA-mediated transcription regulons. 
For example, in rice, A/GCGT serves as a coupling element 
(Hobo et al. 1999). AREBs are the proteins binding to 
ABRE elements of ABA-responsive genes. The members of 
bZIP transcription factor family have been referred to as 
AREBs in Arabidopsis, which were first identified via yeast 
one-hybrid screening using ABRE element as bait (Choi et 
al. 2000; Uno et al. 2000). It has also been reported that 
these proteins, for example, AREB1, AREB2 and ABRE-
binding factor3 (ABF3) undergo homo- or hetero-dimeriza-
tion in order to attain functional specificity (Yoshida et al. 
2010). They also interact with SnRK2 protein kinases and 
mediate ABA-dependent phosphorylation of transcription 
factors in the signaling cascade (Yoshida et al. 2010). 

In rice, although all members of bZIP transcription 
factor family have been identified, their functional analysis 
still remains to be done (Nijhawan et al. 2008). A lot of 
evidence reveals the vital role of phosphorylation and de-
phosphorylation in abiotic stress responses (Agarwal and 
Jha 2010). The conservation of SnRK2-AREB/ABF path-
ways has been evidenced in rice (Fujita et al. 2011). SnKR2 
protein kinases like OSRK1 are involved in phosphoryla-
tion and lead to subsequent activation of AREB regulons 
(Chae et al. 2007). These kinases get activated by ABA, 
resulting in phosphorylation of TRAB1 (Kagaya et al. 
2002; Kobayashi et al. 2005). It was demonstrated that 
mutations in AREB1 and its rice homologue, TRAB1, resul-
ted in transcriptional activation of ABA-responsive genes 
even in the absence of ABA, leading to enhanced drought 
tolerance in plants (Kobayashi et al. 2005; Furihata et al. 
2006; Shinozaki and Yamaguchi-Shinozaki 2007). The 
existence of the AREB pathway was also confirmed by the 
OsABI5 knockout plants, which exhibited greater/better 
salinity tolerance and activated the expression of salt-res-
ponsive genes like SalT and SKC1 (Zou et al. 2008). These 
evidences reaffirmed the potential of protein kinases and 
bZIP transcription factors in developing stress tolerance in 
crop plants like rice. 

 
DREB regulon 
 
The DREB transcription factors regulate the expression of 
several stress-responsive genes. They consist of two sub-
classes, namely, DREB1 and DREB2. These transcription 
factors may act in ABA-dependent as well as independent 
pathways of abiotic stress responses, apart from being 
involved in biotic stress responses (Agarwal et al. 2006; 
Wang et al. 2008) The role of DREB transcription factors in 
abiotic stress responses has been extensively studied. 
OsDREB1A exhibits preferential binding to DRE/CRT core, 
GCCGAC sequences (Dubouzet et al. 2003), whereas 
AtDREBs show comparable binding affinity for both 
GCCGAC and ACCGAC sequences (Stockinger et al. 

1997; Liu et al. 1998). There seems to be evolutionary 
divergence in binding specificities of DREBs among dicots 
and monocots in the abiotic stress response mechanisms 
(Stockinger et al. 1997; Liu et al. 1998). So far, four 
DREB1/CBF homologous genes, OsDREB1A, OsDREB1B, 
OsDREB1C and OsDREB1D have been characterized in 
rice (Dubouzet et al. 2003). Their over-expression in Arabi-
dopsis and rice showed enhanced abiotic stress tolerance. In 
addition, the over-expression of Arabidopsis DREB1A or 
OsDREB1A resulted in accumulation of osmolytes, induc-
tion of several stress-responsive genes and considerably 
improved drought and low temperature tolerance in trans-
genic rice (Ito et al. 2006). This led to the possibility of 
conservation in the functionality of these stress-inducible 
genes in monocot and dicot species (Shinozaki and Yama-
guchi-Shinozaki 2007) and established that modulation of 
DREB transcription factors can impart stress tolerance in 
economically important cereal crops like rice (Oh et al. 
2005; Ito et al. 2006). The stress tolerance was conferred in 
Arabidopsis and tobacco when DREBs from other plants 
like maize or wheat were over-expressed (Dubouzet et al. 
2003; Shen et al. 2003; Qin et al. 2007). 

 
NAC regulon 
 
The NAC transcription factors possess specific domains for 
interaction with other regulators and have been reported to 
act via ABA-dependent and independent pathways by 
playing crucial roles in both biotic and abiotic stress res-
ponses (Olsen et al. 2005; Nakashima et al. 2007; Puranik 
et al. 2012) The NAC regulon has been found to be con-
served in Arabidopsis and rice. Many members of NAC 
transcription factor family, like SNAC1 and SNAC2 
(OsNAC6) upregulated stress-responsive genes facilitating 
the production of protective molecules, kinases and other 
enzymes, which eventually attribute abiotic stress tolerance 
trait in rice (Nakashima et al. 2009). SNAC1, an ABA-indu-
cible transcription factor, predominantly expressed in guard 
cells (stomata), regulates stomatal movement during water-
deficit conditions and its over-expression triggers stomatal 
closure. The transgenic plants possessed better seed setting 
than wild type. Furthermore, SNAC2 (OsNAC6) transgenic 
plants exhibited considerable abiotic stress tolerance at the 
seedling stage (Ohnishi et al. 2005; Nakashima et al. 2007). 
The transcriptome analysis of transgenic rice revealed that 
target genes of SNAC1 and SNAC2 (OsNAC6) were not 
enriched in NACRS element in the promoter region, sug-
gesting the regulation of NAC genes via a separate pathway 
(Simpson et al. 2003; Hu et al. 2006, 2008). Non-redun-
dancy was observed among various NAC proteins over-
expressed in rice, although primarily they were involved in 
abiotic stress responses (Hussain et al. 2011). Instead, the 
promoter region of SNAC2 (OsNAC6) was found to be 
enriched in several stress-responsive cis-acting elements 
like ABREs, MYBRSs and MYCRSs suggesting ABA-
mediated gene regulation. Differential expression patterns 
of OsNAC10 and ONAC45 were observed due to salinity 
and cold treatments in rice plants, respectively, whereas 
both were commonly upregulated during drought treatment. 
These transcription factors activate the expression of down-
stream target genes like LEA, transcription factors like 
WRKY and NAC, cytochrome P450 (CYP450) and mito-
gen-activated protein kinase kinase (MAPKK) proteins, 
which probably elicit drought tolerance in transgenic rice 
(Xiao et al. 2007; Zheng et al. 2009; Jeong et al. 2010). 
Moreover, OsNAC10 gene regulates the stress-responsive 
genes like AP2, WRKY, leaf-specific target gene, leucine-
rich repeat (LRR), NAC, zinc-finger type proteins and 
potassium transporters like HAK5 (Jeong et al. 2010). Evi-
dences of in vitro binding of ONAC5 and ONAC6 proteins 
suggested that their functional dimerization enables trans-
criptional activation of stress-responsive genes like OsLEA3 
leading to stress tolerance (Rabbani et al. 2003; Takasaki et 
al. 2010). This suggests that NAC transcription factors par-
ticipate in coordinated regulation of molecules in abiotic 
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stress regulatory network in order to mediate stress toler-
ance in plants and may be governed by some master 
regulators simultaneously (Golldack et al. 2011). Besides 
this, co-overexpression of NAC and other transcription fac-
tors like zinc-finger homeodomain (ZF-HD) has been repor-
ted to confer enhanced abiotic stress tolerance in Arabidop-
sis (Tran et al. 2006). This also suggests a critical role of 
NAC transcription factors in molecular mechanisms of abi-
otic stress adaptations. Probably, similar cooperative inter-
actions are anticipated to exist in rice as well and such pos-
sibilities need to be explored. 

 
MYB/MYC regulon 
 
In plants, MYB/MYC transcription factors exist abundantly 
and have been reportedly involved in defense responses 
(Chen et al. 2006). These transcription factors have been 
implicated in ABA-dependent pathway of abiotic stress 
response. The transcription factors specifically bind to 
MYBRS/MYCRS cis-regulatory elements in the promoters 
of downstream genes to mediate stress responses (Abe et al. 
2003; Agarwal and Jha 2011). Several Arabidopsis trans-
cription factors, namely MYB102, MYB44, MYB15 and 
MYB41, have been implicated in diverse abiotic stress res-
ponses and their over-expression has enabled development 
of stress-tolerant plants (Denekamp and Smeekens 2003; 
Agarwal et al. 2006; Jung et al. 2008; Lippold et al. 2009; 
Ding et al. 2009). The over-expression of OsMYB3R2 yiel-
ded superior transgenics eliciting better stress tolerance 
phenotype in rice (Dai et al. 2007). The components of this 
regulon need to be elucidated further by more investigations. 

 
NON-CODING RNAs REGULATING 
TRANSCRIPTION FACTORS 
 
Several regulatory small RNAs play pivotal role in abiotic 
stress responses by controlling expression of transcription 
factors. The recently proposed model of transcriptional 
regulatory network delineates the role of small RNAs 
(Urano et al. 2010). Small RNAs modify major transcrip-
tional regulators like NAC, WRKY and zinc-finger proteins 
in Arabidopsis by post-transcriptional silencing and sig-
naling via ROS (Golldack et al. 2011). The transcribed 
mRNA forms ribonuclear complexes and simultaneously 
undergoes translation to form functional proteins. Some 
mRNAs are initially activated by histone modifications, 
whereas others are regulated post-translationally. However, 
non-translated mRNA may be processed as P-body, which 
leads to degradation of useless mRNA or as stress granules 
which may temporarily store translation initiation factors. 
These key signaling cytoplasmic complexes are crucial 
during stress responses (Urano et al. 2010). Several trans-
cription factors are targets of stress-inducible microRNAs 
(miRNAs). For example, NAC transcription factor family 
members are targeted by miR164 in switchgrass (Matts et al. 
2010). Similarly in Arabidopsis, scarecrow-like (SCL), 
MYB and TCP transcription factors are targets of drought 
and salinity-inducible miRNAs, namely miR159, miR168, 
miR171 and miR396 (Liu et al. 2008). Several small RNAs 
corresponding to many stress-responsive homeobox genes 
have also been identified (Jain and Khurana 2008). These 
results suggest miRNA-mediated regulation of transcription 
factors in abiotic stress responses. In the future, modulation 
of the miRNA-mediated regulatory pathways may prove to 
be promising for abiotic stress tolerance in crop plants. 

 
FUTURE PERSPECTIVES 
 
Plants develop diverse strategies to overcome the detrimen-
tal effects of abiotic stresses. These adaptive strategies 
involve action of transcription factors and other regulatory 
molecules, as they orchestrate complex signaling cascades. 
Technical advancement has enabled the systematic amal-
gamation of knowledge pertaining to abiotic stress respon-
ses. Moreover, in recent times the integration of transcrip-

tomics, metabolomics and proteomics information has 
enabled the detailed analysis of the regulatory networks 
prevalent in abiotic stress responses in plants, including rice. 
At the transcriptional level, role of several transcription 
factors and non-protein coding RNAs have been deciphered. 
The transcription factors are crucial targets for genetic 
manipulations as they can mediate stress tolerance in plants 
by directing multiple abiotic stress regulatory pathways 
singularly or in conjunction with other transcription factors 
(Nakashima et al. 2009; Hussain et al. 2011). The know-
ledge of their binding elements can further highlight the 
importance of several other key components involved in the 
transcriptional regulatory network. The ability of any trans-
cription factor to regulate subregulons in the signaling cas-
cade determines its potential as a suitable candidate for 
engineering stress tolerance in plants. Concurrently, it is 
also important to compare the abiotic stress induced sig-
naling in the tolerant and sensitive plant species in order to 
select the most important regulators of abiotic stress res-
ponses for biotechnological applications. Eventually, the 
biotechnological applications leading to stress tolerance 
must ensure optimum productivity and considerable tol-
erance in crop plants like rice (Gao et al. 2008). 

The products of stress-inducible genes involved in sig-
nal transduction pathways often have been related to abiotic 
stress tolerance in plants. Improvement in abiotic stress 
tolerance has been attained in Arabidopsis and crop plants 
like rice by over-expression of suitable transcription factor 
encoding genes (Nakashima et al. 2009), osmoprotectants 
like LEA genes (Wang et al. 2007; Yang et al. 2010), heat 
shock proteins (Sato and Yokoya 2008), metallothiones 
(Yang et al. 2009), dihydroorotate dehydrogenases (Liu et 
al. 2009), NCEDs (Iuchi et al. 2001), aquaporins (Capell et 
al. 2004; Li et al. 2008), ROS scavenging enzymes like 
ascorbate peroxidise (Lu et al. 2007), kinases like receptor-
like kinases (Ouyang et al. 2010), MAPKs and SnRK2s 
(Kim et al. 2003; Kobayashi et al. 2005; Ning et al. 2010). 

The need of the hour is to develop stress-tolerant crop 
plants by modulating transcription factors and other com-
ponents involved in the abiotic stress signaling network. To 
achieve this, a comprehensive understanding of the regu-
latory network operative during abiotic stress response is 
desirable. The complete elucidation of the transcriptional 
regulatory network and identification of major molecular 
switches would be possible, once functional characteriza-
tion of individual transcription factors and associated regu-
latory components is accomplished. In addition, the cross-
talk among various transcription factor mediated regulatory 
pathways also need to be understood so that genetic engi-
neering of suitable regulatory components helps in raising 
transgenics, which ultimately enable restoration of molecu-
lar balance in plants. 
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