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ABSTRACT 

Plants, being sessile, are strongly influenced by abiotic stress such as high salt, drought, high temperature and freezing. These factors 
cause metabolic toxicity, membrane disorganization, closure of stomata, decreased photosynthetic activity, generation of reactive oxygen 
species (ROS) and altered nutrient acquisition. In order to meet the increasing demands for plant-based agricultural commodities, it would 
be imperative to enhance productivity of crop plants. It is well established that tolerance to abiotic stresses is mediated by a number of 
biochemical reactions and physiological processes, which essentially means that it is a ‘multigenic’ trait. A large number of stress related 
genes are expressed in an ‘orchestrated manner’ to bring about this stress response. For this ‘stress-responsive’ unique gene expression 
network to accrue, transcription factors play a very crucial role. Improvement in stress tolerance through engineering of transcription 
factors genes is emerging as an attractive strategy in recent years. The global expression analyses have also uncovered hundreds of genes 
encoding transcription factors that are differentially expressed under environmental stresses, thus implying that various transcriptional 
regulatory mechanisms are involved. Transcription factors often comprise families of related proteins that share a homologous DNA 
binding domain such as ERF, bZIP, MYC, MYB, NAC and WRKY binding transcription factors. There are several reports where 
increased tolerance has been achieved through the overexpression of selected transcription factor(s). The manipulation of a transcription 
factor can control a broad range of downstream events; therefore can combat abiotic stress efficiently. This review presents a brief 
description of important transgenic studies which have been attempted with a view to understand the role of various transcription factors 
towards abiotic stress tolerance in plants. 
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INTRODUCTION 
 
The challenge of maintaining a balance between mounting 
population and the capacity to produce food is increasing 

day by day. The world population is estimated to reach 
about 10 billion by 2050, which will witness serious food 
shortages. Plants experience various environmental stresses 
like drought, flooding, salinity, high and low temperatures, 
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high light, oxidative stress and heavy metal toxicity along 
with pathogens like bacteria, fungi, viruses resulting in 
significant crop loss. Among the biotic and abiotic stresses, 
abiotic stress is the principle cause of crop loss worldwide, 
which accounts for more than 50% loss of average yield of 
major crops (Bray et al. 2000). 

Abiotic stresses alter the cellular metabolic pathways 
such as inhibition of cell division, photosynthesis, cellular 
respiration, alteration of gene regulation, which leads to the 
altered morphology and physiology of plants. Particular 
environmental conditions may affect specific mechanisms 
e.g. low temperature harshly hampers reproductive develop-
ment and exposure of rice plants to chilling temperature at 
anthesis (floral opening stage) leads to male sterility 
(Mamun et al. 2006). Extreme cold stress mainly results in 
disruption of membrane integrity and solute leakage, leading 
to severe cellular dehydration and osmotic imbalance (Tho-
mashow 1999). Due to these alterations, various phenotypic 
symptoms appear in plants like reduced leaf expansion, 
wilting and chlorosis, which may eventually lead to nec-
rosis. On the other hand, the fundamental physiology of 
high salt stress and drought stress overlap with each other. 
High salt depositions in soil generate a low water potential 
making it increasingly difficult for the plant to acquire both 
water as well as nutrients. Therefore, salt stress essentially 
results in a water deficit condition in the plant and takes the 
form of a physiological drought. Salinity is caused by the 
presence of elevated levels of different salts such as sodium 
chloride, magnesium and calcium sulphates and bicarbo-
nates in soil and water (Ouda 2008). Salinity results in a 
reduction of K+ and Ca2+ content and an increased level of 
Na+, Cl- and SO4

2-, which forms its ionic effects (Mansour 
et al. 2005). Salinity stress induces cellular accumulation of 
hydroxyl radicals, which react with all components of the 
DNA molecule, including the purine and pyrimidine bases 
and the deoxyribose backbone (Khan and Panda 2008). 
High levels of Na+ or high Na+/K+ ratio can disrupt various 
enzymatic processes in the cytoplasm by inducing changes 
in contents and activities of many enzymes (Khan and 
Panda 2008). Soluble protein contents of leaves have also 
been documented to decrease in response to salinity (Parida 
et al. 2002). Due to all the above mentioned reasons, there 
is eventually stunting of plants (Takemura et al. 2000) and 
considerable decrease in the fresh and dry weights of leaves, 
stems and roots (Chartzoulakis and Klapaki 2000). Reactive 
oxygen species (ROS) normally acts as a signaling mole-
cule but its increased production is a common consequence 
of exposure to drought, salinity and low temperature. ROS 
causes photo-oxidative damage, peroxidation and de-esteri-
fication of membrane lipids as well as protein denaturation 
(Bowler et al. 1992). 

As we know, abiotic stress tolerance is a complex and 
multigenic phenomena involving orchestrated functioning 
of different category of genes starting from signaling to 
regulation of expression of genes to different functional 
component for alleviating environmental stresses in plant. 
Interestingly, it has been observed that most of the crop 
species are relatively more sensitive to stress than their wild 
relatives. In light of these observations, it is quite pertinent 
to mention that to develop abiotic stress tolerant plants; the 
prime exercise is to understand the molecular interactions 
between various components of abiotic stress response 
machinery. Inhibition of vegetative growth and reproductive 
development is the first general response of plants to stress, 
which invests all their resources to survive under these 
adverse environmental conditions (Zhu 2001). Depending 
on the extent of stress, plants try to adapt to the changing 
environmental conditions. Although, most of the biochemi-
cal factors necessary for stress tolerance are present in all 
species, the difference is how fast this machinery is acti-
vated, and how the stress is perceived and how the signals 
are further transduced into a series of responses (Mizoguchi 
et al. 2000). In addition to external abiotic signals, a variety 
of internal signals such as hormones and solutes also 
modify plant cell growth and development. A cascade of 

complex events involving several interacting components 
for signal recognition and subsequent transduction of these 
signals to the physiological response is triggered. The com-
plex stress-induced changes in physiology and growth of 
the plants are often the result of altered patterns of gene 
expression. 

Among various components of stress responsive cas-
cades, transcription factors (TFs) are the master regulators 
that control gene clusters. Plants devote a large portion of 
their genome capacity in transcription e.g. around 2000 
transcription factors coding genes are present in the Arabi-
dopsis genome. Identifying stress responsive TF is a crucial 
step towards generating abiotic stress tolerant plant, because 
a single TF can control expression of many target genes 
through specific binding of the TF to the cis-acting element 
in the promoters of downstream target genes. TFs induce 
(activators) or repress (repressors) the activity of the RNA 
polymerase, thus regulating gene expression. TFs can be 
grouped into families according to their DNA-binding 
domain (Riechmann et al. 2000). A group of genes con-
trolled by a certain type of TF is known as a regulon. In the 
plant response to abiotic stresses, at least four different 
regulons can be identified and grouped on the basis of ABA 
sensitivity. First group includes two regulons, which are 
ABA independent, namely the C-repeat binding factor/ 
dehydration responsive element binding protein (CBF/ 
DREB) regulon and the NAM, ATAF and CUC (NAC) 
regulon. The second group includes two ABA-dependent 
regulons such as the ABA-responsive element-binding pro-
tein/ABA-binding factor (AREB/ABF) regulon and the 
myelocytomatosis oncogene (MYC)/myeloblastosis onco-
gene (MYB) regulon. 

In the present review, we focus on effect of abiotic 
stress like dehydration, cold and especially high salinity on 
plant growth and development and role of ABA and trans-
cription factors in the regulation of gene expression under 
these stresses. Finally, we discuss about DREB1/CBF, 
MYC/MYB, AREB/ABF (bZIP) and NAC regulon under 
abiotic stress and stress tolerance due to its over expression 
in model as well as crop plants. 

 
PLANT RESPONSE TOWARDS ENVIRONMENTAL 
STRESSES 
 
Plants being sessile, respond remarkably to mitigate envi-
ronmental stresses. The crop response to abiotic stresses 
involves a simultaneous synthesis and/or activation of vari-
ous proteins, enzymes, nucleotides and redistribution of 
simple solutes, etc. Shinozaki et al. (2003) have identified 
stress inducible gene products in Arabidopsis through 
microarray analysis that can be broadly classified into two 
groups: one is the group of functional proteins and other is 
the group of regulatory proteins. Functional proteins are 
directly involved in different stress responses and the 
related corrective measures to protect the cell from stress, 
such as membrane protein (sensor), channels and trans-
porters for osmotic balance, proteins involved in stability of 
macromolecules e.g. heat shock proteins (HSPs), late 
embryogenesis abundant proteins (LEA proteins), enzymes 
involved in detoxification, osmotin and antifreeze proteins, 
etc. The second group of proteins i.e. regulatory proteins 
includes various protein kinases, protein phosphatases, 
enzymes involved in phospholipid metabolism, signaling 
molecules (calmodulin-binding protein) and transcription 
factors (regulation of stress dependent gene expression), etc. 
Regulatory proteins like transcription factors (DREB, NAC, 
MYB/MYC, ABRE) are very important for expression of 
stress inducible genes (RD29A, LEA, COR, KIN) under 
drought, cold or high salinity stress (Fig. 1). The transcrip-
tion factors interact with cis-elements present in the pro-
moter region of various abiotic stress-related genes and thus 
up-regulate the expression of many genes resulting in im-
parting tolerance towards abiotic stresses. Thus, transcrip-
tion factors are powerful tools for genetic engineering as 
their over expression can lead to the up-regulation of a 
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whole array of genes under their control. Recent research 
has identified several transcription factors, details for which 
are presented in the later part of text. 

In plants, the acclimation/adaptation process towards 
abiotic stress is, in large part, mediated by the plant hor-
mone abscisic acid (ABA). The hormone level increases 
under common stress conditions to trigger metabolic and 
physiological changes. Most of the stress-inducible genes 
are controlled by abscisic acid (ABA), but some are not, 
indicating the involvement of both ABA-dependent and 
ABA-independent regulatory systems in stress-responsive 
gene expression (Zhu 2002; Yamaguchi-Shinozaki and 
Shinozaki 2005). Several stress inducible genes, such as 
RD29A and COR15A, are induced through the ABA-inde-
pendent pathway. This situation necessitates the involve-
ment of TFs in stress response both in presence and absence 
of ABA as shown in Fig. 2. Details pertaining to this aspect 
are also presented in the later part of the text. 

 
TRANSCRIPTION FACTORS AS KEY 
REGULATORY MOLECULES OF PLANT 
RESPONSE TOWARDS STRESSES 
 
Transcription, the first step in the expression of any gene, 
plays a central role in the regulation of the expression of 
genes, which is controlled by numerous transcription fac-
tors that mediate the effects of various signals. Therefore, 
the analysis of transcription factors is essential for under-
standing of mechanisms of gene expression and the adapta-
tion process of plants to their environment and is preferred 
target for engineering of complex agronomical traits of 
interest. Transcription factors are the proteins interacting 
with the specialized DNA sequence of eukaryotic promoters 
or the protein having structural characteristics of known 
DNA-binding regions, whose main function is to activate or 
suppress transcriptional effect of corresponding genes (Shao 
et al. 2005). Plant transcription factor contains the fol-
lowing essential structural features: 
1. A DNA-binding region 
2. An oligomerization site 
3. A transcription-regulation domain 
4. A nuclear localization signal 

Most transcription factors exhibit only one type of DNA-
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Fig. 1 Plant response towards environmental stresses. Plant cells perceive stress signals through various sensors (not yet known completely), and the 
signals are transduced by various signaling pathways involving many secondary messengers, molecules, hormones etc. Different regulatory proteins like 
kinases, phosphatases and transcription factors control stress-inducible gene expression. Various functional proteins protect the cell from damage by 
stresses. 
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Fig. 2 A schematic representation of cellular signal transduction path-
ways and transcription factors involved in abiotic-stress-responses. 
Transcription factors are shown in oval box; cis-acting elements are 
shown in rectangular boxes; and target stress inducible genes are shown in 
pointed end box at the bottom of diagram. ABA-independent pathway 
includes two regulons i.e. DREB/CBF and NAC regulon. In DREB/CBF 
regulon, DREB1, CBF-1, 2 and 3 are induced by cold stress, whereas 
DREB2 are induced by osmotic stress. ABA-dependent pathway includes 
mainly two regulons i.e. MYC/MYB and bZIP regulon induced by dehy-
dration/salt stress. CBF4 (a DREB/CBF member) exceptionally falls in 
ABA-dependent pathway. DREB1/CBF and DREB2 bind to DRE/CRT, 
MYC/MYB to MYCR/MYBR, NAC to NACR and bZIP to ABRE cis-
acting elements. DRE: drought responsive element, ABRE: abscisic acid 
responsive binding element, MYBR: MYB recognition site, MYCR: 
MYC recognition site, bZIP: basic-domain leucine-zipper. 
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binding and oligomerization domain, occasionally in multi-
ple copies. DNA-binding regions are normally adjacent to 
or overlap with oligomerization sites, and their combined 
tertiary structure determines critical aspects of transcription 
factor activity. Pairs of nuclear localization signals exist in 
several transcription factors, and basic amino acid residues 
play essential roles in their function, this is also true for 
DNA-binding domains. 

Post-translational modifications also affect binding of 
transcription factors to DNA. Regulation of transcription 
factor binding to DNA via protein phosphorylation and 
dephosphorylation may determine the expression of many 
target genes, including those that encode transcription fac-
tors. Both external and internal stimuli affect the regulatory 
mechanisms. For example, serine residues in the DNA-
binding domain of the bZIP transcription factor HBP-1a 
(Foster et al. 1994) are phosphorylated in a Ca2+-dependent 
manner (Meshi et al. 1998) while phosphorylation of an-
other bZIP TF, Opaque2, is controlled by a circadian-clock-
related mechanism (Ciceri et al. 1997). Till now, hundreds 
of transcriptional elements of environmental stress-respon-
sive genes in higher plants have been isolated, which regu-
late and control the stress reaction related to drought, 
salinity, cold and heat (Glombitza et al. 2004). 

 
EVOLUTION OF TRANSCRIPTION FACTORS AND 
THEIR GENE FAMILIES 
 
The evolution of many morphological traits during the 
domestication of plants has been associated with changes in 
TFs. Any minor change in TF regulation, their sequences or 
their target DNA sequences can greatly alter gene regu-
latory networks, and plant physiology or morphology and 
structural changes to these genes may represent a signifi-
cant evolutionary force (Clark et al. 2006). Hence, TFs are 
given adequate emphasis while creating varieties with a 
better tolerance to diverse stresses. Transcription factor 
genes of the same family but from diverse eukaryotic orga-
nisms show structural and functional similarity, suggesting 
that they evolved from a common ancestor. Gene duplica-
tion played an important role during this evolution (Kers-
tetter et al. 1994). After duplication, transcription factor 
gene distribution may be altered through translocation and 
related family members are either dispersed throughout the 
genome or clustered on one chromosome (Janssen et al. 
1998). Sequence alignment of transcription factor genes 
indicates that nucleotide substitution played a central role in 
the evolution of conserved regions, whereas substitutions 
and small insertions/deletions contributed to variable region 
diversification (Puruggana and Wessler 1994). In addition, 
exon capture through recombination of different genes or 
parts thereof formed new transcription factor genes (Chen 
et al. 1997). Sequence comparisons suggest that homeo-
domain leucine zipper genes, homeodomain ring-finger 

genes (Schindler et al. 1993), bHLH (basic helix-loop-
helix) leucine zipper genes (Kawagoe and Murai 1996) and 
HMG-finger genes (Christiansen et al. 1996) originated 
through exon capture. 

TFs gene families vary considerably in size among 
different organisms (Riechmann et al. 2000; Wray et al. 
2003). AP2-ERF (Apetlla2-ERF), NAC, Dof (DNA binding 
with one finger), YABBY, WRKY, GARP, TCP, SBP, ABI3-
VP1 (B3), EIL and LFY are plant-specific TFs. MYB, 
MADS box, bHLH, bZIP and HB, which are not plant 
specific families, also form large families. NAC, which is 
one of the largest family of transcription factors (Olsen et al. 
2005) specifically found in plants. Dozens of transcription 
factors are involved in the plant response to abiotic stress 
(Bartels and Sunkar 2005; Vincour and Altman 2005). Most 
of these TFs fall into several large transcription factor fami-
lies, such as AP2/ERF, bZIP, NAC, MYB, MYC, Cys2His2 
zinc-finger and WRKY (Umezawa et al. 2006). These TFs 
can be classified into several families based on the structure 
of their binding domains. Various TFs databases are now 
available for many plant species including crop plants 
(Table 1). PlnTFDB (2.0) is a public database where vari-
ous TF gene families have been identified and catalogued in 
different plant species (Fig. 3). Among a number of TFs 
listed (Gosal et al. 2009), members of the MYB, MYC, 
ERF, bZIP and WRKY transcription factor families have 
already been implicated in the regulation of stress responses 
(Schwechheimer et al. 1998; Singh et al. 2002). Therefore, 
these are attractive targets for the purpose of gene regula-
tion and manipulation of the regulatory elements, which 
may be beneficial for improving tolerance of plants toward 
abiotic stresses. 

 
 
 

Table 1 Plant-specific transcription factor databases. 
Database Species References 
RARTF Arabidopsis Lida et al. 2005 
DATF Arabidopsis Guo et al. 2005 
RARTF Arabidopsis Lida et al. 2005 
AtTFDB Arabidopsis Palaniswamy et al. 2006 
GRASSIUS, GrassTFDB Brachipodium, Oryza sativa, Sorghum bicolor Yilmaz et al. 2009 
SoybeanTFDB Glycine max Mochida et al. 2009 
SoyTFKB Glycine max Chen 2009; Wang et al. 2010 
LegumeTFDB Glycine max, Lotus japonica Mochida et al. 2010 
TOBFAC Nicotiana tabacum Rushton et al. 2008 
DRTF Oryza sativa Gao et al. 2006 
DPTF Populus Zhu et al. 2007 
wDBTF Triticum spp. Romeuf et al. 2010 
PlnTFDB 20 plant species Riano-Pachon et al. 2007 
PlantTFDB 2.0 50 plant species Zhang et al. 2011 
DBD >700 species Wilson et al. 2008 
PLACE Vascular plants Higo et al. 1999 

 

bZIP AP2

ERFNAC WRKY

MYB

Fig. 3 Total number of genes coding for transcription factors in Arabi-
dopsis and Oryza sativa. Total number of genes encoding TFs is shown in 
the centre of the pie chart while number of genes encoding various types 
of transcription factors (bZIP, NAC, MYB, ERF, AP2 and WRKY) are 
depicted in the periphery of the circle. 
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GENOME-WIDE DISTRIBUTION OF TRANS-
CRIPTION FACTORS: IN SILICO STUDY 
 
Recent progress in plant genomics has allowed us to dis-
cover and identify important genes that regulate yield and 
tolerance to environmental stress. The whole genome se-
quencing of Arabidopsis thaliana was completed in 2000 
(The Arabidopsis Genome Initiative 2000). The genome 
sequencing project of japonica rice was completed in 2005 
(International Rice Genome Sequencing Project 2005; Itoh 
et al. 2007). In the past decade, with the availability of 
complete genome sequences, we have been able to compile 
catalogs describing the function and organization of TF 
regulatory systems in a number of organisms. There are 
many databases that provide data sets of genes putatively 
encoding TFs in many plant species; these are usually pre-
dictions based on computational methods such as sequence 
similarity search and/or Hidden Markov Model search of 
conserved DNA-binding domains. Plant genomes contain a 
large number of transcription factors; for example, Arabi-
dopsis and rice dedicates 7.4% and 6.58% of their genome 
coding for 2304 and 4432 TFs, respectively (Table 2) 
(Riano-Pachon et al. 2007; Libault et al. 2009). 

High-throughput expression profiling, such as micro-
array technology, has been used widely to study abiotic 
stress responsive machinery in plants. Genome-wide trans-
cript profiling with Arabidopsis has identified many genes 
that are regulated by cold, salt and drought stress. Similar 
studies have also been conducted with crop plants such as 
rice, barley, maize and soybean. Transcriptional profiling of 
chickpea using a cDNA microarray revealed that 109, 210 
and 386 genes were differentially regulated after drought, 
cold and high-salinity treatment, respectively (Mantri et al. 
2007). It has been suggested that as many as 30% of the 
genes in Arabidopsis genome may be affected by abiotic 
stress at the transcript level (Feng et al. 2005). About 45% 
of Arabidopsis TFs are plant-specific, whereas the rest of 
them share DNA-binding domains common to other eu-
karyotes (Riechmann et al. 2000). There are >4000 trans-
cription factor gene loci occupying 8.4% of non redundant 
gene loci in soybean genome, more than a double of that in 
A. thaliana (Mochida et al. 2009). Categorizing the 
annotated loci according to Gene Ontology (GO) terms 
suggests that more than 500 transcription factors in soybean 
would probably respond to osmotic stresses (Mochida et al. 
2009). These studies suggest that TFs are critical regulators 
of the changes in gene expression and environmental stress 
responses. 

 
TRANSCRIPTION FACTORS: USEFUL TARGETS 
FOR IMPROVING STRESS TOLERANCE 
 
Transcription activators and repressors both have been 
shown to participate in conferring abiotic stress tolerance 
(Abe et al. 2003; Sakuma et al. 2006). Over expression of 
the genes that regulate the transcription of a number of 
down-stream stress responsive genes seems to be a pro-
mising approach in the development of stress-tolerant trans-
genic plants when compared to engineering individual func-
tional genes (Bartels and Hussain 2008). The novelty as 
well as importance of this approach stem from the fact that 
the cis-acting promoter sequences of different stress-respon-

sive genes induced in response to the same stress are similar 
to an extent and thus can possibly be governed at the same 
time by modulating the transcriptional factor gene (Wasi-
lewska et al. 2008). The best characterized transcription 
factor genes, which have been shown to have a definite role 
in stress tolerance are the AREB1 (ABA responsive element 
binding protein1), ABF2 (ABA responsive binding factor 2), 
DREB (dehydration responsive binding protein) genes, 
MYB genes and bZIP encoding genes (Umezawa et al. 
2004). Table 3 and 4 describes the list of TFs, which are 
induced under abiotic stresses and for improving stress tol-
erance in various plants, respectevely. 

On the basis of involvement of ABA, these genes can 
be grouped in four regulons: 

I. ABA-independent regulons are: 
(1) CBF/DREB regulon 
(2) NAC regulon 
II. ABA-dependent regulons are: 
(1) AREB/ABF regulon 
(2) MYC /MYB regulon. 
 

TRANSCRIPTION FACTORS INVOLVED IN ABA-
INDEPENDENT PATHWAY 
 
CBF/DREB Regulon 
 
An important class of transcription factors is the DREB/ 
CBF that binds to the dehydration responsive element 
(DRE/CRT) in the promoter of cold and dehydration res-
ponsive LEA genes including rd29A, rd17, cor6.6, cor15a, 
erd10 and kin1 (Kasuga et al. 1999; Yamaguchi-Shinozaki 
and Shinozaki 1994). Yamaguchi-Shinozaki and Shinozaki 
(1994) identified DRE/CRT elements, which is a nine base 
pair conserved sequence (5�-TACCGACAT-3�) from the 
promoter of a stress inducible rd29A gene that is essential 
for rd29A induction under dehydration and cold stress in 
transgenic Arabidopsis. DREB/CBF belongs to the ERF 
(ethylene responsive element binding factors) family of 
transcription factors. ERF proteins are a subfamily of the 
APETLA2 (AP2)/ethylene responsive element binding pro-
teins (EREBP), which are a distinctive feature of plants. On 
the basis of stress response, DREBs/CBFs are further divi-
ded into two subclasses, i.e. DREB1/CBFs and DREB2, 
which is induced by cold and dehydration stress respec-
tively. Both DREB1/CBFs and DREB2 induces stress res-
ponsive genes in ABA-independent manner except CBF4, 
which is the part of ABA-dependent pathway of stress 
response (Fig. 2). DREB1B/CBF1, DREB1A/CBF3 and 
DREB1C/CBF2 genes are reported to be present in Arabi-
dopsis genome (Gilmour et al. 1998; Liu et al. 1998). 
Arabidopsis also contain DREB2-like genes, DREB2A and 
DREB2B (Liu et al. 1998). Homologous DREB1/DREB2 
genes have also been known in various cereals and millet 
crops (Lata et al. 2011). 

In Arabidopsis, expression of DREB1A was induced by 
cold, while DREB2A was induced by dehydration and salt 
stress (Liu et al. 1998). Expression of CBF1/DREB1B, 
CBF2/DREB1C and CBF3/DREB1A was induced only by 
cold stress in Arabidopsis (Gilmour et al. 1998). Similarly, 
in Brassica the BnCBFs 5, 7 and 16 were induced by cold 
stress (Gao et al. 2002). More recently, the isolation of 
BjDREB1B was reported to be induced by low temperature 

Table 2 Predicted number of genes coding for transcription factor in various plant species. 
Plant species Genome size 

(Mb) 
Total number of 
chromosomes 

Total number of 
predicted genes 

Total number of predicted 
genes coding for TFs 

Predicted % of genes 
coding for TFs 

Arabidopsis 145 n=5 32825 2304 7.0 
Glycine max 1115 n=20 66153 5557 8.4 
Medicago truncatula 500-550 n=8 38835 473 1.2 
Oryza sativa japonica 430 n=12 67393 1913 2.8 
Populus 550 n=19 45555 2758 6.0 
Sorghum bicolor 730 n=10 36338 2464 6.7 
Zea mays 2400 n=10 125435 5383 4.2 
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Table 3 Induction of transcription factors in various plant species in response to various abiotic stresses. 
Gene Sources ABA responsive Stress responsive Reference 
DREB/CBF 

AvDREB1  Aloe vera No Cold Wang and He 2007 
AtDREB1A  Arabidopsis thaliana No Cold Liu et al. 1998 
AtDREB2A  Arabidopsis thaliana No Drought, salt Liu et al. 1998 
AtDREB2A  Arabidopsis thaliana No Drought, salt Liu et al. 1998 
AtDREB2C  Arabidopsis thaliana No Salt, osmotic, cold Lee et al. 2010 
AtCBF1  Arabidopsis thaliana No Cold Gilmour et al. 1998 
AtCBF2  Arabidopsis thaliana NA Cold Gilmour et al. 1998 
AtCBF3  Arabidopsis thaliana NA Cold Gilmour et al. 1998 
AtCBF4  Arabidopsis thaliana Yes Drought Haake et al. 2002 
PNDREB1  Arachis hypogea No Drought, cold Zhang et al. 2009 
AhDREB1  Artiplex hortensis NA Salt Shen et al. 2003b 
BjDREB1B  Brassica juncea No Drought, salt, low temperature Cong et al. 2008 
BnCBFs 5, 7 and 16  Brassica napus No Cold Gao et al. 2002 
CaDREBLP1 Capsicum annum No Drought, salt Hong and Kim 2005 
CAP2  Cicer arietinum Yes Drought, salt Shukla et al. 2006 
DmDREBa  Chrysenthemum (Dendranthema×morifolium) Yes Cold Yang et al. 2009 
DmDREBb  Chrysenthemum (Dendranthema×morifolium) Yes Cold Yang et al. 2009 
FaDREB1  Festuca arundinacea No Cold Tang et al. 2005 
GmDREBa  Glycine max No Cold, drought, salt Li et al. 2005 
GmDREBb  Glycine max Yes Cold, drought, salt Li et al. 2005 
GmDREBc  Glycine max No Drought, salt Li et al. 2005 
DREB2-type HvDRF1  Hordeum vulgare Yes Drought, salt Xue and Loveridge 2004
HvDREB1  Hordeum vulgare No Drought, salt, cold Xu et al. 2009 
OsDREB1A  Oryza sativa No Cold, salt Dubouzet et al. 2003 
OsDREB1B  Oryza sativa No Cold Dubouzet et al. 2003 
OsDREB1C Oryza sativa Yes Drought, salt, cold Dubouzet et al. 2003 
OsDREB1F  Oryza sativa No Drought, salt, cold Wang et al. 2008 
OsDREB2A  Oryza sativa No Drought, salt, cold Dubouzet et al. 2003 
OsDREB2B  Oryza sativa No Heat, cold Matsukura et al. 2010 
OsDREB2C  Oryza sativa No None Matsukura et al. 2010 
OsDREB2E  Oryza sativa No None Matsukura et al. 2010 
PgDREB2A  Pennisetum glaucum No Drought, salt, cold Agarwal et al. 2007 
SbDREB2A  Salicornia brachiata NA Drought, salt, heat Gupta et al. 2010 
SiDREB2  Setaria italica No Drought, salt Lata et al. 2011 
SbDREB2  Sorghum bicolor NA Drought Bihani et al. 2011 
TaDREB1  Triticum aestivum No Cold, drought Shen et al. 2003a 
TaDREB2  Triticum aestivum Yes Drought, salt, cold Egawa et al. 2006 
ZmDREB2A  Zea mays No Drought, salt, cold, heat Qin et al. 2007 

NAC 
ATAF1  Arabidopsis thaliana Yes Drought Lu et al. 2007 
AtNAC055  Arabidopsis thaliana NA Drought, salt Tran et al. 2004 
SNAC1 Oryza sativa NA Cold, drought, salt Hu et al. 2006 
SNAC2  Oryza sativa Yes Cold, drought, salt Hu et al. 2008 
OsNAC6  Oryza sativa Yes Cold, drought, salt Nakahsima et al. 2007 
OsNAC5 Oryza sativa Yes Cold, drought, salt Takasaki et al 2010 
SiNAC  Setaria italica NA Drought, salt Puranik et al. 2011 
TaNAC4  Triticum aestivum NA Cold, salt Xia et al. 2010 

bZIP 
GmbZIP1 Glycine max Yes Drought Gao et al. 2011 
OsbZIP23 Oryza sativa Yes Drought, salt, PEG Xiang et al. 2008 
OsABF1 Oryza sativa Yes Drought, salt, oxidative stress Hossain et al. 2010 
OsABF2 Oryza sativa Yes Drought, salt, oxidative stress Hossain et al. 2010 
OsbZIP72 Oryza sativa Yes Drought Lu et al. 2009 
OsAREB1 Oryza sativa Yes Drought, heat Jin et al. 2010 
Ptr ABF Poncirus trifoliata Yes Drought, cold Huang et al. 2010 
SlAREB Solanum lycopersicum Yes Drought, salt Hsieh et al. 2010 

MYC/MYB 
AtMYC2  Arabidopsis thaliana Yes Drought, salt, cold Abe et al. 2003 
AtMYB2  Arabidopsis thaliana Yes Drought, salt Abe et al. 2003 
AtMYB4  Arabidopsis thaliana Yes Salt Yanhui et al. 2006 
AtMYB6  Arabidopsis thaliana Yes Salt Yanhui et al. 2006 
AtMYB7  Arabidopsis thaliana Yes Salt Yanhui et al. 2006 
AtMYB44  Arabidopsis thaliana Yes Salt  Yanhui et al. 2006 
AtMYB41  Arabidopsis thaliana Yes Drought, salt Lippold et al. 2009 
AtMYB73  Arabidopsis thaliana Yes Salt Yanhui et al. 2006 
MYB15  Arabidopsis thaliana Yes Drought, salt, cold Ding et al. 2009 
GmMYB76  Glycine max No Salt Liao et al. 2008b 
GmMYB92  Glycine max No Cold, salt Liao et al. 2008b 
GmMYB177  Glycine max No Drought, salt Liao et al. 2008b 
OsMYB3R-2  Oryza sativa NA Drought, salt, cold Dai et al. 2007 
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Table 4 Overexpression of stress responsive TFs in plants provide tolerance towards various abiotic stresses. Only representative examples have been 
shown in the table. 
Gene Source Transgenic plant Promoter Abiotic stress tolerance Reference 
DREB/CBF 

DREB1A  Arabidopsis thaliana Oryza sativa Ubi Drought and salt  Oh et al. 2005 
DREB1A A. thaliana Triticum aestivum RD29A Drought  Pellegrineschi et al. 2004 
DREB1A A. thaliana Arachis hypogaea RD29A Drought and oxidative  Bhatnagar-Mathur et al. 2009
DREB1A A. thaliana Solanum lycopersicum CaMV35S Cold and oxidative  Hsieh et al. 2002b 
DREB1A  A. thaliana Dendranthema vestitum CaMV35S / RD29A Drought, salt and cold  Hong et al. 2006a, 2006b, 

2006c 
DREB1A  A. thaliana Dendranthema vestitum CaMV35S Heat  Hong et al. 2009 
DREB1A  A. thaliana Nicotiana tabacum CaMV35S / RD29A Drought and cold  Kasuga et al. 2004 
CBF1  A. thaliana Solanum tuberosum CaMV35S Cold  Pino et al. 2008 
HRD  A. thaliana Oryza sativa CaMV35S Drought  Karaba et al. 2007 
HRD  A. thaliana Trifolium alexandrinum CaMV35S Drought and salt  Abogadallah et al. 2011 
CBF1  A. thaliana Arabidopsis thaliana CaMV35S Cold  Jaglo-Ottosen et al. 1998 
DREB1A / 
DREB2A 

A. thaliana Arabidopsis thaliana CaMV35S Drought and cold Liu et al. 1998 

CBF3  A. thaliana Arabidopsis thaliana CaMV35S Cold  Gilmour et al. 2000 
CBF4  A. thaliana Arabidopsis thaliana CaMV35S Cold and drought  Haake et al. 2002 
DREB2A  A. thaliana Arabidopsis thaliana CaMV35S Drought  Sakuma et al. 2006 
CBF1 A. thaliana Brassica napus CaMV35S Cold  Jaglo-Ottosen et al. 2001 
DREB1A  A. thaliana Solanum tuberosum RD29A Salt  Celebi-Toprak et al. 2005 
DREB1A  A. thaliana Solanum tuberosum RD29A Salt  Behnam et al. 2006 
DREB1A  A. thaliana Solanum tuberosum RD29A Cold  Behnam et al. 2007 
CBF1-3  A. thaliana Solanum tuberosum CaMV35S / RD29A Cold  Pino et al. 2007 
DREB1A  A. thaliana Tall fescue RD29A Drought  Zhao et al. 2007 
DREB1B  Brassica juncea Nicotiana tabacum CaMV35S Drought and salt  Cong et al. 2008 
CBF5 / CBF17 Brassica napus Brassica napus CaMV35S Cold  Savitch et al. 2005 
DREB  Caragana korshinskii Nicotiana tabacum CaMV35 Salt and osmotic  Wang et al. 2011 
CAP2  Cicer arietinum Nicotiana tabacum CaMV35S Drought and salt Shukla et al. 2006 
DREB1  Glycine max Medicago sativa RD29A Salt  Jin et al. 2010 
DREB2 G. max Arabidopsis thaliana CaMV35S / RD29A Salt, drought and cold  Chen et al. 2007 
DREB2  G. max Nicotiana tabacum CaMV35S Drought  Chen et al. 2007 
DREB  Gossypium hirsutum Triticum aestivum Ubi/RD29A Drought, salt and cold Gao et al. 2009 
DREB1  G. hirsutum Nicotiana tabacum CaMV35S Freezing Shan et al. 2007 
DREB1C Medicago truncatula Medicago truncatula and 

Hibiscus rosa-sinensis 
RD29A Cold  Chen et al. 2010 

DREB1  Oryza sativa Oryza sativa CaMV35S Drought, salt and cold Ito et al. 2006 
DREB1A O. sativa Arabidopsis thaliana CaMV35S Cold and salt  Dobouzet et al. 2003 
DREB1B  O. sativa Arabidopsis thaliana CaMV35S Cold and heat  Qin et al. 2007 
DREB2B  O. sativa Arabidopsis thaliana Ubi Drought and heat Matsukura et al. 2010 
DREB2A  Pennisetum glaucum Nicotiana tabacum CaMV35S Salt and osmotic Agarwal et al. 2010 
EREBP1  Solanum tuberosum Solanum tuberosum CaMV35S Cold and salt  Lee et al. 2007 

NAC 
NAC019 A. thaliana Arabidopsis thaliana CaMV35S Drought Tran et al. 2004 
NAC055 A. thaliana Arabidopsis thaliana CaMV35S Drought Tran et al. 2004 
NAC072 A. thaliana Arabidopsis thaliana CaMV35S Drought Tran et al. 2004 
NAC2 Arachis hypogaea Arabidopsis thaliana CaMV35S Drought and salt  Liu et al. 2011 
NAC2 O. sativa Oryza sativa Ubi Cold, salt and drought Hu et al. 2008 
NAC063 O. sativa Arabidopsis thaliana CaMV35S Salt tolerance Yokotani et al. 2009 
NAC6 O. sativa Oryza sativa CaMV35S Dehydration and salt Nakashima et al. 2007 
NAC1 O. sativa Oryza sativa CaMV35S Salt and drought Hu et al. 2006 
NAC10 O. sativa Oryza sativa GOS2/RCc3 Drought, salt and heat Jeong et al. 2010 
NAC69 Triticum aestivum Triticum aestivum Hvdhn4s Dehydration Xue et al. 2011 
NAC2 T. aestivum Arabidopsis thaliana CaMV35S Drought and salt Mao et al. 2012 

bZIP 
ABF2 A. thaliana Arabidopsis thaliana CaMV35S Drought and salt  Kim 2004 
ABF3 A. thaliana Lactuca sativa CaMV35S Drought  Vanjildorj et al. 2005 
AtbZIP24 A. thaliana Arabidopsis thaliana CaMV35S Salt  Yang et al. 2009 
bZIP17 A. thaliana Arabidopsis thaliana CaMV35S Salt  Liu et al. 2008 
ABF3 A. thaliana Arabidopsis thaliana and 

Oryza sativa 
CaMV35S Drought Kang et al. 2002; Oh et al. 

2005 
bZIP1 Capsicum annum Arabidopsis thaliana CaMV35S Drought and salt  Lee 2006 
bZIP Lycopersicum esulentum Nicotiana tabacum CaMV35S Drought and salt  Seong 2008 
bZIP23 Oryza sativa Oryza sativa Ubi Drought and salt  Xiang et al. 2008 
bZIP72 O. sativa Oryza sativa CaMV35S Drought  Lu et al. 2009 
ABF Poncirus trifoliata Nicotiana tabacum CaMV35S Dehydration and drought Huang et al. 2010  
bZIP Tamarix hispida Nicotiana tabacum CaMV35S Salt  Wang et al. 2010 

MYC/MYB 
MYC2  A. thaliana Arabidopsis thaliana CaMV35S Osmotic  Abe et al. 2003 
MYB2  A. thaliana Arabidopsis thaliana CaMV35S Osmotic  Abe et al. 2003 
MYB15  A. thaliana Arabidopsis thaliana CaMV35S Drought and Salt Ding et al. 2009 
MYB44 A. thaliana Arabidopsis thaliana CaMV35S Drought  Jung et al. 2008 
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along with drought and salt stress (Cong et al. 2008). In rice, 
cold stress induced expression of OsDREB1A and 
OsDREB1B has been reported, while exposure to salt and 
dehydration stress could induce expression of OsDREB2A 
(Dubouzet et al. 2003). Similarly, ABA, mannitol and cold 
treatments had negligible effect on expression of DREB2C 
(Lee et al. 2010). Recently, a new member of the DREB 
family - OsDREB1F has been reported from rice, which is 
induced in response to salt, drought and cold stress (Wang 
et al. 2008). Various DREB homologs, e.g. GmDREBa, 
GmDREBb and GmDREBc from Glycine max, were in-
duced by salt, drought and cold stress (Li et al. 2005). A 
homolog of DREB2-type gene found in wheat was found to 
be induced in response to cold, while dehydration and salt 
stress had small effect on its expression (Shen et al. 2003a). 
The expression of several DREB homologs i.e. FaDREB1 
(Festuca arundinacea), DREB1 (Aloe vera) and DmDREBa 
and DmDREBb [Chrysanthemum (Dendronthema×mori-
forlium)] were induced by cold stress (Tang et al. 2005; 
Wang and He 2007; Yang et al. 2009). 

 
TRANSGENIC PLANTS OVER EXPRESSING 
DREB/CBF TRANSCRIPTION FACTOR CONFERS 
ABIOTIC STRESS TOLERANCE 
 
Various model and crop plants have been engineered using 
DREB transcription factor to provide stress tolerance under 
unfavourable environmental conditions. Over expression of 
AtDREB1A under a constitutive promoter conferred en-
hanced freezing and dehydration tolerance in transgenic 
Arabidopsis (Liu et al. 1998) and tobacco (Kasuga et al. 
2004) plants respectively. DREB1A/CBF3 overexpressing 
transgenic plant accumulated proline and various sugars 
under non-stress conditions (Gilmour et al. 2000). However, 
transgenic Arabidopsis and tobacco plants showed stunted 
growth under non-stressed conditions. Detailed analysis of 
these plants revealed that overexpression of AtDREB1A 
under constitutive promoter upregulated 12 stress-related 
genes in plants that showed two-fold higher expression than 
in control plants. Among these, six genes were known to be 
stress-related, while the other six were found to have 
sequence similarities with cold acclimatization proteins 
(Liu et al. 1998). Likewise, in case of 35S::OsDREB1A 
transgenic Arabidopsis, six genes showed two-fold expres-
sion compared to that in control plants (Dubouzet et al. 
2003; Liu et al. 1998; Ito et al. 2006). In contrast, when 
AtDREB1A was expressed under stress inducible RD29A 
promoter instead of constitutive promoter (CaMV 35S), 
negative effects on plant growth in transgenic Arabidopsis 
and tobacco were diminished under stress condition (Kasuga 
et al. 2004; Liu et al. 1998). Similarly, the 
RD29A:DREB1A/CBF3 transgenic wheat showed improved 
drought stress tolerance (Pellegrineschi et al. 2004). 

In literature, there are only a few reports of transgenic 
plants for DREB2 genes. Liu et al. (1998) first reported 
AtDREB2A expression in Arabidopsis, but they did not 
notice any stress tolerance in transgenic Arabidopsis. A 
post-translational modification by deleting a portion of the 
protein between the 135th and 165th amino acid of 
AtDREB2A is important for its proper functioning, which 
leads to up-regulation of downstream genes in transgenic 
Arabidopsis (Sakuma et al. 2006). Tobacco has been 
broadly studied for DREB expression under various abiotic 
stresses. Chen et al. (2007) transformed tobacco with 

GmDREB2 under CaMV 35S promoter. The resultant trans-
genic tobacco plants showed increased drought tolerance 
and accumulated 4.5-fold higher proline content. Interes-
tingly, in this case, the constitutive expression did not 
induce phenotypic abnormalities as previously reported in 
several plants with constitutive expression of DREB genes. 
Agarwal et al. (2010) reported enhanced osmotic stress tol-
erance in transgenic tobacco transformed with PgDREB2A 
from Pennisetum glaucum. Due to overexpression of 
PgDREB2A, transgenic tobacco plants showed 4-fold 
higher germination as compared to wild type under 200 mM 
NaCl. In addition to this, transgenic plants exhibited better 
plant growth in terms of leaf area, root number, root length 
and fresh weight compared to wild type under both stress 
conditions. Constitutive expression of AtCBF1 in Arabidop-
sis (Jaglo-Ottosen et al. 1998) conferred freezing stress 
tolerance, while in transgenic tomato, the AtCBF1 expres-
sion showed tolerance to drought (Hsieh et al. 2002a). 
Transgenic Arabidopsis plants that expressed AtCBF3 
showed freezing tolerance, while overexpression of 
AtCBF4 conferred freezing and dehydration tolerance. 
Likewise, transgenic Arabidopsis plant that expressed 
GmDREB2 under both constitutive and stress inducible 
promoters showed drought and salt stress tolerance (Chen et 
al. 2007). Transgenic plants showed high root/shoot ratio 
that resulted in enhanced water uptake under dehydration 
conditions. Expression of several CBF-type genes in trans-
genic canola resulted in freezing tolerance and high photo-
synthetic activity (Savitch et al. 2005). Transgenic Chrysan-
themum with expression of AtDREB1A showed drought 
and salt tolerance and accumulated higher proline content 
and ROS scavenging enzymes activity (Hong et al. 2006a, 
2006b, 2006c). In this way, various DREBs for different 
organisms were isolated and transformed under constitutive 
or stress inducible promoters in rice (Oryza sativa) (Oh et 
al. 2005; Ito et al. 2006), potato (Solanum tuberosum) (Lee 
et al. 2007), tall fescue (Festuca arundinacea) (Zhao et al. 
2007) as well as in wheat (Triticum aestivum) (Wang et al. 
2006). These plants exhibited enhanced stress tolerance by 
accumulation of proline, LEA protein, soluble sugars as 
well as enhanced activity of different ROS scavenging en-
zymes. Genes expressed under constitutive promoter 
showed growth retardation that can be eliminated by stress 
inducible promoters like RD29A. From these studies, it can 
be concluded that DREBs play important role in abiotic 
stress responses and tolerance in plants. 

 
NAC regulon 
 
The first NAC transcription factor was described fifteen 
years ago by Souer et al. (1996). Now, genomes of a num-
ber of plant species have been fully sequenced, revealing 
the NAC gene family to code for one of the largest families 
of transcription factors in plants (Shen et al. 2009). NAC 
(NAM, ATAF1/2 and CUC2) domain proteins comprised 
one of the largest plant-specific TF family represented by 
~105 genes in Arabidopsis (Ooka et al. 2003), ~140 genes 
in rice (Fang et al. 2008) and ~101 genes in soybean 
genome (Pinheiro et al. 2009). Ooka et al. (2003) classified 
the NAC proteins into 18 sub-groups in Arabidopsis and 
Oryza sativa, based on their amino acid sequence similari-
ties. NAC proteins are plant-specific transcription factors 
and more than 100 NAC genes have been identified in 
Arabidopsis and Oryza sativa to date. Shen et al. (2009) 

Table 4 (Cont.) 
Gene Source Transgenic plant Promoter Abiotic stress tolerance Reference 
MYC/MYB (Cont.) 

MYB41 A. thaliana Arabidopsis thaliana CaMV35S Osmotic  Lippold et al. 2009 
MYB3R-2  Oryza sativa Arabidopsis thaliana CaMV35S Salt, cold and drought Dai et al. 2007 
MYB4  O. sativa Arabidopsis thaliana CaMV35S Freezing  Vannini et al. 2004 
MYB4  O. sativa Arabidopsis thaliana CaMV35S Drought  Mattana et al. 2005 
MYB4  O. sativa Lycopersicum esulentum CaMV35S / COR15 Drought  Vannini et al. 2007 
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carried out a genome wide bioinformatics survey on plant 
NAC domain TFs and identified a total of 1232 NAC pro-
teins from 11 different plant species including 148 NAC 
TFs from Populus. 

A NAC transcription factor has the conserved NAC 
domain in the N-terminal (Ooka et al. 2003) as well as a 
more variable, transcriptional activation or repression 
region in the C-terminal (Hao et al. 2010). NAC domain at 
the N-terminus, which comprises nearly 160 amino acid 
residues that are divided into five subdomains (A-E) (Ooka 
et al. 2003). The C-terminal region of NAC proteins, usu-
ally containing the transcriptional activation domain, is 
highly diversified both in length and sequence (Ooka et al. 
2003). The NAC domain was identified based on consensus 
sequences from Petunia NAM and Arabidopsis ATAF1/2 
and CUC2 proteins (Aida et al. 1997). NAC sub domains D 
and E are required for DNA-binding ability, while the C-
terminal region can function as a transcriptional activation 
domain (Xie et al. 2000; Duval et al. 2002). Thirteen Arabi-
dopsis and six rice NAC transcription factors have been 
shown to contain �-helical transmembrane motif in the far 
C-terminal region, which anchors the NAC protein to intra-
cellular membranes rendering them inert. 

NAC proteins play important roles in plant growth, 
development and hormone signaling (Olsen et al. 2005), 
stress responses (Lu et al. 2007) such as drought, salinity 
and cold shock (Hu et al. 2006; Wang et al. 2009). 

 
TRANSGENIC PLANTS OVER EXPRESSING NAC 
TRANSCRIPTION FACTORS CONFERS ABIOTIC 
STRESS TOLERANCE 
 
Transgenic over expression of diverse NAC factors in spe-
cies ranging from A. thaliana to wheat (Xia et al. 2010; 
Yang et al. 2011) show improved drought and salt tolerance. 
Recently, a NAC gene SNAC1 (stress-responsive NAC1) 
was isolated and characterized in rice. SNAC1was induced 
by drought and salinity predominantly in guard cells. 
SNAC1 over-expressing transgenic rice plants showed sig-
nificantly improved drought resistance under field con-
ditions and strong tolerance to salt stress (Hu et al. 2006). 
The cDNA encoding a NAC protein was first reported as 
the RESPONSIVE TO DEHYDRATION 26 (RD26) gene in 
Arabidopsis (Yamaguchi-Shinozaki et al. 1992). Arabidop-
sis RD26 encodes a NAC protein and is induced not only by 
dehydration but also by ABA. Transgenic Arabidopsis 
plants overexpressing RD26 were highly sensitive to ABA, 
whereas RD26-repressed plants were insensitive (Fujita et 
al. 2004). OsNAC6 expression was induced by cold, drought, 
high salinity and ABA. OsNAC6 showed high sequence 
similarity to the Arabidopsis stress-related NAC proteins – 
ANAC019, ANAC055 and ANAC072 (RD26) (Ooka et al. 
2003). Ohnishi et al. (2005) also reported that OsNAC6 was 
induced by cold, high salinity, drought, and ABA. Naka-
shima et al. (2007) showed that many abiotic and biotic 
stress-responsive genes were upregulated in OsNAC6-over-
expressing rice plants, and that the transgenic lines were 
tolerant to dehydration and high salinity. Expression analy-
sis revealed that ONAC045 was induced by drought, high 
salt, low temperature stresses and abscisic acid (ABA) treat-
ment in leaves and roots. In Brassica napus, nine NACs 
were reported to be differently regulated by biotic and 
abiotic stresses (Hegedus et al. 2003). Three Arabidopsis 
NAC genes, ANAC019, ANAC055 and ANAC072 were 
shown to bind to the promoter region of ERD1, which was 
characterized as a stress-responsive gene (Tran et al. 2004). 
Over expression of another NAC gene OsNAC6/SNAC2 in 
rice resulted in enhanced tolerance to drought, salt and cold 
during seedling development (Hu et al. 2008). Transgenic 
rice plants over expressing ONAC045 showed enhanced 
drought and salt tolerance, indicating that ONAC045 played 
an important role in abiotic stress response and may serve 
as a potential target for engineering stress tolerant rice. In 
rice, ONAC5 and ONAC6 transcripts are induced by ABA, 
drought, and salt stress (Takasaki et al. 2010). ONAC5 and 

ONAC6 activate stress-inducible genes such as OsLEA3 by 
direct binding to the promoter and they interact in vitro 
suggesting functional dimerization of these TFs (Takasaki 
et al. 2010). Over expression of SNAC1 enhanced salt and 
drought tolerance in transgenic rice and OsNAC10 im-
proved drought tolerance and grain yield (Hu et al. 2006; 
Jeong et al. 2010). OsNAC10-regulated target genes mainly 
included protein kinases and TFs (AP2, WRKY, LRR, NAC 
and Zn-finger types) as well as the stress-responsive genes 
such as cytochrome P450 and the potassium transporter 
HAK5 (Jeong et al. 2010). In Brassica napus, nine mem-
bers of the NAC (BnNAC) were identified for their dif-
ferential expression after feeding with flea beetle and treat-
ment of cold temperature (Hegedus et al. 2003). In Arabi-
dopsis, Tran et al. (2004) and Fujita et al. (2004) reported 
that three NAC genes ANAC019, ANAC055 and ANAC072 
were induced by drought, salinity and/or low temperature 
and the transgenic Arabidopsis plants over-expressing these 
genes showed improved stress tolerance compared to the 
wild type. Furthermore, proteins of these genes can bind to 
the promoter sequences with CATGTG motif (Tran et al. 
2004). Another stress-related Arabidopsis NAC gene is 
AtNAC2 that can be induced by high salinity, abscisic acid 
(ABA), aminocyclopropane carboxylic acid (ACC), and 
naphthalene acetic acid (NAA) has been predicted to be a 
downstream gene in the ethylene and auxin signal pathways 
(He et al. 2005). Over-expression of AtNAC2 resulted in 
alteration of lateral root development and enhanced salt 
tolerance (He et al. 2005). Another stress-responsive NAC 
gene OsNAC6, which is a member of ATAF subfamily 
(Ooka et al. 2003) has been reported for its induction by 
abiotic stresses and jasmonic acid treatment (Ohnishi et al. 
2005) and overexpression of this gene in rice resulted in 
enhanced tolerance to dehydration stresses (Nakashima et al. 
2007). The SNAC1-overexpressing rice plants also showed 
improved salt tolerance, further emphasizing the usefulness 
of this gene in stress tolerance. SNAC1 over-expressing 
transgenic rice plants showed significantly improved 
drought tolerance under field conditions and strong tol-
erance to salt stress (Hu et al. 2006). 

 
TRANSCRIPTION FACTORS INVOLVED IN ABA-
DEPENDENT PATHWAY 
 
AREB/ABF (bZIP) regulon 
 
bZIP transcription factors are a class of transcription factors, 
which are highly conserved and are extensively present in 
animals, microorganisms, higher plants, green algae, moss 
and fern. In addition to this, bZIP TFs could also be detec-
ted in other organisms such as mammal (Mus musculus), 
non-mammal (Gallus gallus), insect (Drosophila melano-
gaster), nematode (Caenorhabditis elegans), echinoderms 
(Strongylocentrotus purpuratus), urochordata (Ciona intes-
tinalis), yeast (Saccharomyces cerevisiae), pathogen (Usti-
lago maydis), protozoa (Dictyostelium discoideum and 
Leishmania braziliensis), bacteria (Bacillus licheniformis 
and Polaribacter dokdonensis) and archaea (Hyperthermus 
butylicus) and so on. Many plant transcription factors, such 
as O2 of maize, PosF21 of Arabidopsis, HBP-1 of wheat 
and rice belong to this group. 

The bZIP TFs are characterized by a 40 to 80 amino-
acid-long conserved domain (bZIP domain) (Wingender et 
al. 2001). Plant bZIP proteins preferentially bind to DNA 
sequences with an ACGT core. Binding specificity is regu-
lated by flanking nucleotides. Plant bZIPs preferentially 
bind to the A-box (TACGTA), C-box (GACGTC) and G-
box (CACGTG). 

The common features of bZIP transcription factors in-
clude (Lee et al. 2006): 
1. A basic region specifically and directly binding to DNA 
2. A leucine-zipper for dimerization adjacent to the basic 

region 
3. An acidic activation domain in N-terminus binding to 

DNA in dimerized forms 
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Apart from the bZIP domain, bZIPs also contain other 
conserved domains that may function as transcriptional acti-
vators, including proline-rich, glutamine-rich and acidic 
domains (Liao et al. 2008a). 

Initially, plant bZIP proteins were classified into five 
families on the basis of similarities of their bZIP domain 
(Vettore et al. 1998). Later, Correa et al. (2008) identified 
13 groups of bZIP homologues in angiosperms that rep-
resent 34 Possible Groups of Orthologues (PoGOs). The 34 
PoGOs may correspond to the complete set of ancestral 
angiosperm bZIP genes that participated in the diversifica-
tion of flowering plants. Arabidopsis thaliana genome 
sequence indicated the presence 75 to 77 bZIP proteins rep-
resenting members of ten groups of homologues on se-
quence similarity of the basic region (Jakoby et al. 2002). 
Apart from Arabidopsis, an additional one group have been 
identified by Nijhawan et al. (2008) in rice and three groups 
by Correa et al. (2008) in multiple green plants indicating a 
unified classification of angiosperm bZIP genes. The groups 
were named with letters referring to some of their promi-
nent members (A for ABF/AREB/ABI5, C for CPRF2-like, 
G for GBF, H for HY5), to protein size (B for big and S for 
small), or alphabetical. Seven members of group A have 
been studied (AtbZIP39/ABI5, AtbZIP36/ABF2/AREB1, 
AtbZIP38/ABF4/AREB2, AtbZIP66/AREB3, AtbZIP40/ 
GBF4, AtbZIP35/ABF1 and AtbZIP37/ABF3). Arabidopsis 
has about four times as many bZIP genes as yeast, worm 
and human (Meshi and Iwabuchi 1995). bZIP distribution in 
few plant species shown in Fig. 3 using PlantTFDB-V2.0. 
Wang et al. (2011) reported that Sorghum genome encodes 
at least 92 bZIP transcription factors. A total of 101, 99, 216, 
45 and 108 putative bZIP genes have been detected in 
Arabidopsis, rice, maize, wheat and soybean respectively 
(PlantTFDB-V2.0; SoyTFKB-2.0). Similarly, about 100 
putative bZIP sequences were predicted in the rice genome 
and classified into 10 sub families (Guo et al. 2005). 

Generally, bZIP TFs play important roles in various 
physiological and developmental processes like organ and 
tissue differentiation (Shen et al. 2007), unfolded protein 
response (Liu et al. 2007), plant senescence (Lee et al. 
2006) etc. On the other hand, accumulated data show that 
bZIP TFs have also been regarded as important regulators in 
response to various abiotic stresses and signaling such as 
salt and freezing stress (Liao et al. 2008b), methyl violo-
gen-mediated oxidative stress (Lee et al. 2006). 

 
TRANSGENIC PLANTS OVEREXPRESSING bZIP 
TRANSCRIPTION FACTORS CONFERS ABIOTIC 
STRESS TOLERANCE 
 
The role of bZIP TFs in drought, high salinity and cold 
stresses has been established in Arabidopsis (Kim et al. 
2004), rice (Lu et al. 2009) tomato (Hsieh et al. 2010), soy-
bean (Liao et al. 2008c) and pepper (Lee et al. 2006). Seve-
ral cold induced bZIP factors have been reported such as 
LIP15 from maize (Kusano et al. 1995), LIPl9 from rice 
(Aguan et al. 1993) and TBZI7 from tobacco (Kusano et al. 
1998). In addition, the mlip15 factor has been shown to 
bind to the maize Adhl gene promoter, which is also in-
duced by low temperature. One class of bZIP proteins that 
is linked to stress responses comprises the TGA/octopine 
synthase (ocs)-element-binding factor (OBF) proteins. 
These bind to the activation sequence-1 (as-1)/ocs element, 
which regulate the expression of some stress-responsive 
genes such as the PR-1 and GLUTATHIONE S-TRANS-
FERASE6 (GST6) genes (Chen and Singh 1999). In Arabi-
dopsis, there are seven members of the TGA/OBF family, 
which play important roles in plant defense, xenobiotic 
stress responses and development. Most of ABRE binding 
bZIPs belong to group A, in which the expression of several 
members could be strongly induced by ABA and abiotic 
stresses (Jakoby et al. 2002; Hu et al. 2006; Lu et al. 2009). 
Arabidopsis plants that overexpress either ABF3 or ABF4 
proteins have ABA hypersensitivity and other ABA-associ-
ated phenotypes, have altered expression of ABA/stress 

regulated genes and exhibit reduced transpiration and en-
hanced drought tolerance (Kang et al. 2002). A bZIP trans-
cription factor from maize designated as ABP9 (ABRE bin-
ding protein 9) has been identified, which specifically binds 
to ABRE2 motif. Transgenic Arabidopsis plants constitu-
tively overexpressing ABP9 showed improved photosynthe-
tic capacity of plants under both stresses (drought and heat 
stresses) by regulating the photosynthetic pigment composi-
tion, elevating carbon-use efficiency and increasing ABA 
contents. In contrast, transgenic plants of antisense OsABI5 
exhibited increased tolerance to salt and PEG treatment 
(Zou et al. 2008) suggesting its negative regulatory role in 
stress tolerance. Recently, overexpression of OsbZIP23 in 
transgenic rice showed positive role that can regulate the 
expression of a wide spectrum of stress related genes (up- 
or down-regulation) in response to abiotic stresses (drought, 
salinity) through an ABA dependent pathway (Xiang et al. 
2008). Similarly, alteration of OsbZIP23 expression can 
change the expression levels of more than 1000 genes and 
as a matter of fact, many of these genes are involved in 
stress responses or tolerance. Another bZIP TF (ThbZIP1) 
gene was cloned from T. hispida and its expression was 
found to be differentially regulated by various abiotic 
stresses (Wang et al. 2010). Nijhawan et al. (2008) reported 
37 drought/salinity/cold-regulated bZIP genes in rice. The 
ZmbZIP72 gene expressed differentially in various organs 
of maize plants and was induced by abscisic acid, high sal-
inity and drought treatment in seedlings. In rice, OsbZIP72 
was reported to function as a positive regulator in ABA 
signal transduction and the seedlings overexpressing 
OsbZIP72 showed an increased drought tolerance (Lu et al. 
2009). In rice, overexpression of OsbZIP23, OsbZIP72 and 
OsAREB1 conferred abscisic acid (ABA) sensitivity and 
drought tolerance (Xiang et al. 2008; Lu et al. 2009; Jin et 
al. 2010). The constitutive overexpression of ABF3 in 
Arabidopsis and rice also results in enhanced drought 
tolerance (Kang et al. 2002; Oh et al. 2005). Moreover, in 
rice, overexpression of the positive regulators of ABA 
signaling, OsbZIP23 and OsbZIP72, enhances abiotic stress 
tolerance (Xiang et al. 2008) and mutants of OsABF1 are 
more sensitive to drought and salinity (Hossain et al. 2010). 
The bZIP transcription factor OsABF1 (Oryza sativa ABA 
responsive element binding factor 1) is an ABA responsive 
element binding factor that enhances abiotic stress signaling 
in rice. Several members of bZIP family in rice have been 
identified for their functions potentially related to biotic or 
abiotic stress response or signaling. For example, LIP19 is 
induced by low temperature and may function as a 
molecular switch in cold signalling in rice (Shimizu et al. 
2005). OsBZ8, another bZIP gene of the family, is rapidly 
induced by ABA and shows stronger expression in salt-
tolerant cultivars than in salt-sensitive cultivars (Mukherjee 
et al. 2006). Zou et al. (2008) reported OsABI5 encodes a 
protein that can bind to ABRE (G-box) and was suggested 
to be involved in ABA signal transduction and stress res-
ponses. 

 
MYC/MYB regulon 
 
The MYC/MYB families of proteins are diverse in nature 
and have been reported in both plants and animals and per-
form multiple functions. Members of this family were first 
identified in the regulation of anthocyanin biosynthesis 
(Goodrich et al. 1992). Both MYC/MYB transcription fac-
tors participate in the ABA-dependent pathway and up 
regulate various abiotic stress responsive genes. The DNA-
binding domain of plant MYB proteins usually consist of 
two imperfect repeats of about 50 residues (R2, R3), 
whereas it contains three repeats (R1, R2 and R3) in ani-
mals. However, OsMYB3R-2 with three repeats was repor-
ted in rice (Dai et al. 2007). Different MYB proteins bind to 
different cis-elements present on their target gene’s promo-
ter. Mammalian MYBs such as C-MYB, A-MYB, and B-
MYB bind to the cognate site T/CAACG/TGA/C/TA/C/T 
(MBSI). While several plants MYB proteins that bind to 
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MBSI will also bind to a second site, TAACTAAC (MBSII) 
(Romero et al. 1998). Since, MYC/MYB TF is ABA-
dependent; it accumulates only after ABA accumulation. 
Chen et al. (2006) reported that AtMYB4 (At1g22640), 
AtMYB6 (At4g09460), AtMYB7 (At2g16720), AtMYB44 
(At5g67300), AtMYB73 (At4g37260), AtMYB77 
(At3g50060), and AtMYBCDC5 (At1g09770) were found to 
be constitutively expressed in all organs and during all 
stress treatments (Chen et al. 2006). Two important 
MYC/MYB transcription factors AtMYC2 and AtMYB2 
proteins bind to CACATG and TGGTTAG cis-acting ele-
ments, respectively, of the RD22 promoter of Arabidopsis 
and cooperatively activate this promoter (Abe et al. 1997). 

 
TRANSGENIC PLANTS OVEREXPRESSING 
MYC/MYB TRANSCRIPTION FACTORS CONFERS 
ABIOTIC STRESS TOLERANCE 
 
Overexpression of AtMYC2 and AtMYB2 and AtMYC2 plus 
AtMYB2 under constitutive promoter (CMV 35 S) in Arabi-
dopsis induced ABA responsive stress genes. The transgenic 
plants showed an ABA-hypersensitive phenotype and in-
creased osmotic stress tolerance (Abe et al. 2003). Overex-
pression of MYB15 results in improved drought and salt tol-
erance in Arabidopsis (Ding et al. 2009). Transgenic plants 
overexpressing AtMYB41 showed dwarf phenotype due to 
alterations of cell expansion and cuticle integrity and en-
hanced drought sensitivity (Cominelli et al. 2008). Overex-
pression of AtMYB75 and AtMYB90 led to increased antho-
cyanin levels (Borevitz et al. 2000; Xie et al. 2006), while 
Met-derived glucosinolate content of Arabidopsis increased 
with overexpression of AtMYB28 (Gigolashvili et al. 2007). 
In contrast, OsMYB3R-2 transgenic plants showed enhanced 
tolerance to freezing, drought and salt stress and decreased 
sensitivity to ABA (Dai et al. 2007). Different level of tol-
erance was imparted by overexpression of OsMYB4 depen-
ding on the nature of the host plants. Arabidopsis transgenic 
plants overexpressing OsMYB4 showed increased chilling 
and freezing tolerance with a dwarf phenotype (Vannini et 
al. 2004), the tomato transgenic showed higher tolerance to 
drought stress (Vannini et al. 2007), whereas increased 
drought and cold tolerance was observed in the apple trans-
genic (Pasquali et al. 2008). Overexpression of StMYB1R-1 
transgene in potato plants improved plant tolerance to 
drought stress while having no significant effects on other 
agricultural traits (Shin et al. 2011). 

 
CONCLUSION AND FUTURE PROSPECTIVE 
 
The fact that World population is increasing exponentially 
but our food production is not increasing with this pace is 
worrying one and all. It is estimated that in 2050, world 
population will cross 9 billion (Godfray et al. 2010). Along 
with this, our arable land is decreasing day by day due to 
increasing severity of soil destruction by environmental 
conditions (Golldack et al. 2011). Abiotic stresses such as 
dehydration, high salinity, cold and heat are the major 
stresses, which affect plants metabolic and physiological 
process leading to heavy loss in crop yield. Although, con-
ventional breeding has been very helpful in developing 
stress tolerant varieties of crop plants but it has its own 
limitations. In this context, transgenic technology can be an 
important alternative approach for enhancing stress tol-
erance in plants. In response to abiotic stresses, various 
categories of signaling molecules, functional proteins and 
regulatory proteins have been identified, which play an im-
portant role in plant tolerance toward these stresses. Since, 
abiotic stress is a complex phenomenon; genetic engineer-
ing of plants with regulatory protein like transcription factor 
can be a strong approach for enhancing plant tolerance to 
abiotic stresses, thus increasing the crop productivity. Vari-
ous attempts have made to augment plant stress tolerance 
by overexpressing various kinds of functional proteins such 
as enzymes for the synthesis of osmoprotectants and ion 
transporters (Zhang et al. 2004). But, engineering of single 

enzymes is not sufficient, because multiple stress responses 
are necessary for plants to endure severe stress conditions. 
In plants, it is possible for a single transcription factor to 
control the expression of many target genes through the 
specific binding of the transcription factor to cis acting 
elements in the promoters of their respective target genes. 
In this regard, role of several transcription factors related to 
the plant response to abiotic stress has been elucidated and 
many of these factors have already been shown to be 
effective for engineering abiotic stress tolerance in model 
plants like tobacco or Arabidopsis. With this viewpoint, TFs 
such as CBF/DREB, bZIP and NAC transcription factors 
needs special attention, which have their unique signifi-
cance due to their involvement in multiple stress responsive 
pathways. A number of transgenic plants have been gene-
rated using these TFs genes to improve abiotic stress tol-
erance, including drought, salt and cold (Saibo et al. 2009; 
Hussain et al. 2011). Therefore, to obtain a fruitful trans-
genic crop having economic values, it is essential to iden-
tify and functionally characterize new TFs genes and raise 
stable transgenic plants. A deeper understanding of the 
transcription factors regulating these genes, the products of 
the major stress responsive genes and cross talk between 
different signaling components should remain an area of 
intense research activity in future. It is desirable that ap-
propriate stress inducible promoters should drive the stress 
genes as well as transcription factors, which will minimize 
their expression under a non-stress condition thereby 
reducing yield penalty. 
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